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Summary

Our research was concentrated on the following topics:

. Special Relations in Automated Deduction (Manna and Waldinger [85a][85b])

:- Theorem provers have exhibited super-human abilities in limited, obscure subject domains
but seem least competent in areas in which human intuition is best developed. One reason for this
is that an axiomatic formalization requires us to state explicitly facts that a person dealing in a
familiar subject would consider too obvious to mention; the proof must take each of these facts into
account explicitly. A person who is easily able to construct an argument informally may be too
swamped in detall to understand, let alone produce, the corresponding formal proof. A continuing
effort in our research is to make formal theorem proving more closely resemble intuitive reasoning.
One case in point is our treatment of special relations.

In most proofs of interest for program synthesis, certain mathematical relations, such as equal-
ity and the orderings, present special difficulties. These relations occur frequently in specifications
and in derivation proofs. If their properties are represented axiomatically, proofs become lengthy,
difficult to understand, and even more difficult to produce or discover automatically. Axioms such
as transitivity have many consequences, most of which are irrelevant to the proof; including them
produces an explosion in the search space.

For the equality relation, the approach that was adopted early on is to represent its properties
with rules of inference rather than axioms. In resolution systems, two rules of inference, paramod-

ulation (Wos and Robinson [69]) and E-resolution (Morris [69]), were introduced. Proofs using
these rules are shorter and clearer, because one application of a rule can replace the application
of several axioms. More importantly, we may drop the equality axioms from the clause set, thus
eliminating their numerous consequences from the search space.

We have discovered two rules of inference that play a role for an arbitrary relation analogous
to that played by paramodulation and E-resolution for the equality relation. These rules apply to
sentences employing a full set of logical connectives; they need not be in the clause form required
by traditional resolution theorem provers. We intend both these rules to be incorporated into
theorem provers for program synthesis.
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Employing the new special-relations rules yields the same benefits for an arbitrary relation
as using paramodulation and E-resolution yields for equality: proofs become shorter and more
comprehensible and the search space becomes sparser.

* Binary-Search Algorithms (Manna and Waldinger [85c])

Some of the most efficient numerical algorithms rely on a strategy of binary search; according
to this strategy, the interval in which the desired output is sought is divided roughly in half at
each iteration. This technique is so useful that some authors (e.g., Dershowitz and Manna [77] and
Smith [85]) have proposed that a general binary-search paradigm or schema be built into program
synthesis systems and then specialized as required for particular applications.

It is certainly valuable to store such schemata if they are of general application and difficult to
discover. This approach, however, leaves open the question of how schemata are discovered in the
first place. We have found that the concept of binary search appears quite naturally and easily in
the derivations of some numerical programs. The concept arises as the result of a single resolution
step, between a goal and itself.

The programs we have produced in this way (e.g., real-number quotient and square root,
integer quotient and square root, and array searching) are quite simple and reasonably efficient
but are bizarre in appearance and different from what we would have constructed by informal
means. For example, we have developed the real-number square-root program sqrt(r,£C) given
above. This program tests if the error tolerance C is sufficiently large; if so, 0 is a close enough
approximation. Otherwise, the program finds recursively an approximation within 2C less than

.the exact square root. It then tries to refine this estimate, increasing it by C if the exact squareroot is large enough and leaving it the same otherwise.

This program was surprising to us in that it doubles a number rather than halving it as the
classical binary-search program does. Nevertheless, if the repeated occurrences of the recursive call
sqrt(r, 2F) are combined by common-subexpression elimination, this program is as efficient as the
familiar one and somewhat simpler.

e Plan Formation in Situational Logic (Manna and Waldinger [85d])

The deductive-tableau approach applies directly to the synthesis of applicative (or functional)
.. programs, which alter no data structures and produce no other side effects. To apply the same ap-
--, proach to nonapplicative programs, which may produce side effects, we have employed a situational

logic, i.e., a system that allows us to refer explicitly to the states of a computation.

The situational logic we have developed (Manna and Waldinger [81]) fits well within the
deductive-tableau framework. We include new functions, such as val(s,e) (the value of expression
c in state s). s;e (the state produced by evaluating expression e in state s), and new relations.
such as holds(s, p) (true if the value of sentence p is true in state s, and false otherwise). These
are ordinary function and relation symbols; proofs in situational logic may employ the ordinary
deductive-tableau inference rules.

We are currently attempting to apply these techniques to problems in robot planning by
.01 " proving theorems in a new formulation of situational logic. Our machine-oriented deductive-tableau

inference systern is adapted to this logic, with special attention being paid to the derivation of
conditionals and recursive plans. With an implementation of the Fay's [79] unification algorithm
(see also llullot [80]), it has been found possible to build in equations and equivalences of thej 2
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situ-.,Lonal logic. Inductive proofs of theorems for even the simplest planning problems have been
"N found to require challenging generalizations.

. Synthesis of Concurrent Programs (Bengt, Manna, Waldinger [86])

The synthesis of concurrent programs is much more complicated than the synthesis of se-
quential programs. In general, a concurrent program does not have a single input value and aPd

V* single output value, but receives several inputs and sends several outputs during its execution. If
we consider sequences of input and output values, then we can specify a concurrent program by
giving a relation between the sequence of input values and the sequence of output values. This
specification method is natural especially for networks of deterministic processes that communicate
asynchronously by sending messages over buffered channels (see e.g. [Kahn 74]). Deterministic
data flow networks fall into this category.

'We developed a framework for deductive synthesis of such concurrent programs. Since we
wanted to use induction conveniently, we considered only networks that produce finite sequences
of output values when receiving finite sequences of output values.

* Nonclausal Logic Programming (Malachi, Manna and Waldinger [84] [85], Malachi [86])

A deductive-tableau theorem prover can be adapted to serve as the interpreter for a program-
ming language just as resolution theorem provers have been adapted to interpret the language
PROLOG. The programming language TABLOG we obtain in this way combines attractive features
of LISP and PROLOG:

, It allows the use of equality in programs. (This is allowed in LISP but forbidden in
PROLOG.)

a Programs may define either functions or relations. (LISP programs must repre-
sent relations as truth-valued functions; PROLOG programs must represent n-ary
functions as (n + 1)-ary relations.)

w Pattern matching and backtracking are built in. (They are not part of LISP.)

In contrast to other languages combining PROLOG and LISP features, such as LOGLISP (Robinson
and Sibert [82]) and QLOG (Komorowski [79]), TABLOG is a single new language, not a meld of two
separate components.

A sample TABLOG program, to insert a number u in its place in an ordered list of numbers, is
as follows:

insrt(u,[]) = [u]
insert(u. v o X) = if U < 1,

then uo(rox)

else v o inscrt(u,x)

lere [ is the empty list, [u] is the singleton list whose sole element is u, and v o x is the result
of inserting ("consing") the number , at the beginning of the list x. We find this program to be
clearer than the corresponding program in either LISP or PROLOG.

. Logic: The Calculus of Computer Science

The research papers in which we have presented the deductive approach to program synthesis
has been addressed to the customary advanced readership of the scholarly journals. In an effort
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to make this work accessible to a wider audience, including computer science undergraduates and
programmers, we have developed a more elementary treatment in the form of a two-volume book,
The Logical Basis for Computer Programming, Addison-Wesley (Manna and Waldinger [85]).

The book requires no computer programming and no mathematics other than an intuitive
understanding of sets, relations, functions, and numbers; the level of exposition is elementary.
Nevertheless, the text presents some novel research results, including

" theories of strings, trees, lists, and finite sets and bags, particularly well suited to
theorem-proving and program-synthesis applications;

" formalizations of parsing, infinite sequences, expressions, substitutions, and unifi-
cation;

" a nonclausal version of skolemization;

" a treatment of stepwise induction in the deductive-tableau framework.

7. Publications

Malachi, Y. [86]

Nonclausal logic programming, Ph.D. thesis (supervised by Z. Manna), Computer Science
Department, Stanford University, Stanford, CA, 1986.

Malachi, Y., Z. Manna, and R. Waldinger [84]

TABLOG: The deductive-tableau programming language, ACM Symposium on LISP and
Functional Programming, Austin, TX, August 1984, pp. 323-330.

Malachi, Y., Z. Manna, and R. Waldinger [851

TABLOG: Functional and relational programming in one framework, IEEE software, Vol.
2, No. 1 (January 1986), pp. 75-76 (invited abstract).

Manna, Z., and R. Waldinger [80]

A deductive approach to program synthesis, ACM Transactions on Programming Lan-
guages and Systems, Vol. 2, No. 1, January 1980, pp. 90-121.

Manna, Z., and R. Waldinger [81]
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Informatica, Vol. 16, 1981, pp. 371-426.
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and Theoretical Computer Science, New Delhi, India (invited paper), Lecture Notes in
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Abstract

TABLO(; (Tableau Logic Programming Language) is a language based on first-order pred-
icate logic with equality that combines functional and logic programming. TABLOG incor-
porates advantages of Lisp and PROLOG.

A program in TABLOG is a list of formulas in a first-order logic (including equality.
negation, and equivalence) that is more general and more expressive than PROLOG's Horn
clauses. Whereas PROLOG programs must be relational, TABLOG programs may define
either relations or functions. While LISP programs yield results of a computation by
returning a single output value, TABLOG programs can be relations and can produce several
results simultaneously through their arguments.

TABLOG employs the Manna-Waldinger deductive-tableau proof system as an interpreter
in the same way that PROLOG uses a resolution-based proof system. Unification is used
by TABLOG to match a call with a line in the program and to bind arguments. The basic

. rules of deduction used for computing are nonclausal resolution and rewriting by means of
equality and equivalence.

A pilot interpreter for the language has been implemented.

This research was supported in part )yv the National Science Foundation uirder (rants ( 'S-82-11523.
MCS-81-11586, and MCS-81-05565. by the T nitrd States Air For(e Office of Scienific elcsearch 'del
Grant AFOSR-81-001-1. by DARP)A under (otract N0039-2-(-0250. and b. a grat froin 113M R~escarch,

San Jose. California.

Presented at the ACM Symposium on LISP and irnctior;il Programming. I niversity of Texa. at A11t i1.

. August 5 8, 1984.
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1. Introduction

Logic programming [Kowalski 79] attempts to improve programmer productiv it 'y 1)'y propos-
ing logic, a human-oriented language, as a programming language. PROLOG. the flagship of
logic-programming languages, based on a resolution proof system, has a restricted syntax.
TABLOG is based on a more flexible theorem prover, the deductive-tableau proof system
[Manna and Waldinger 80], which allows a more intuitive and a richer syntax. A TABLOG
program is a list of assertions in [quantifier-free] first-order logic with equality. The execu-
tion of a program corresponds to the proof of a goal, which produces the desired output(s)
as a side effect.

Since a particular procedure is specified by the programmer. and since the proof taking
place is always a proof of a special case of a theorem-namely, the case for the given input
the program interpreter does not need all the deduction rules available in the original
deductive-tableau proof system. The theorem prover can be more directed. efficient, and
predictable than a theorem prover used for program synthesis or for any other general-
purpose deduction.

2. TABLOG Syntax

Syntactic Objects

The language is that of the quantifier-free first-order predicate logic with equality, consist-
ing of the following:

* truth values: true, false.

" connectives: A, V, -, -, - (implies), - (if), if-then-else.

" variables such as u, v, X1, Y25.

" constants such as a. b, [], 5.

" predicates such as =, prime, E, >.

" functions such as gcd, append, +.

The user must declare the variables, constants, functions, and predicates used in the
prograin: some primitive constants, functions, and predicates (such as 0, []. +, -. >, odd)
are predefined.

Note that we use the if-then-else construct. both as a connective for formulas

if u =[ then empty(u) else sorted(u)

arld &s ain operat,)r generating terms

gcd(x. y) = if Y > y then gcd(x-y, y)

else gcd(x, y-x).

Thi- . tolgether with ,- (reverse implication). enables the programmer to write LISP-style
as , %(l1 as PROIO(;-stvle programs.

2



Programs
4 A program is a list of assertions (formulas in [quantifier-free] first-order logic with equality).

specifying the algorithn. Variables are implicitly universally quantified.

Here is a very simple program for appending two lists:

append([], r) = ,
append(xou,iv) = xoappend(u,v).

The o symbol denotes the list insertion (cons in LISP) operator, and [] denotes the empty
list (nil in LISP).

A call to a program is a goal to be proved. Like the assertions. goals are formulas
in logic, but variables are implicitly existentially quantified. The bindings of these vari-
ables are recorded throughout the proof and become the outputs of the program upon
termination.

..

For example. a call to the append program above might be

z = append([1, 2, 3], [a,b]).

The output of the execution of this program call will be

[1, 2, 3, a, b],

as expected.

The list construct (e.g. [1, 2, 3]) is for convenience in expressing input and output, and
denotes the term 1o (2o (3o[])).

3. Examples

The following examples demonstrate the basic features of TABLOG. The correctness of
these programs does not depend on the order of assertions in the program. It is possible,
however, to write programs that do take advantage of the known order of the interpreter's
("Oal evaluation, as will be explained later.. II the examples, we use x and y (possibly with subscripts) for variables intended to be-. 'assigned atos (Integers in most of the examples): u and v (possibly with subscripts) are

variables used for lists.

Deleting a List Element

N - The following program deletes all [top-level] occurrences of an element x from a list:

delete(x,}) =
delete(x, yo u) (if x y then delete(x. u)

else q odelete(r. i )).
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This program demonstrates the use of equality. if-theri-elhe, and recursive calls. For those
who prefer the PROLOG style of programming. the last line could be replaced by assertions:

delete(x, xo u) = delete(x, ii)
x $ y - delete(x. yo t) = yodelete(x, u)

To remove all occurrences of a from the list [u, b, a, cj the goal

z = delete(a, [a. b, a. (j)

is given to the interpreter.

Set Union

The following example, a program to find the union of two sets represented by lists, demon-
strates the use of negation, equivalence and if-theo-else:

1. union([, v) = v,
2. union(xou, v) if member(x, v)

then union(u, v)
else (xounion(u, v))

:3. -'member(x, [])

4. member(x, you) - ((x = y) V member(x, u))

Lines 1 and 2 define the union function. Line 1 defines the union of the empty set
with another set, and line 2 asserts that the head x of the first set xou should be inserted
into the union if it is not already in the second set v.

Lines 3 and 4 define the member relation. Line 3 specifies that no element is a member
of the empty set, and line 4 defines how to test recursively membership in a nonempty
set.

Factorial

The following program will compute the factorial of a nonnegative integer x:

fact(O) = I
fact(x) = x* fact(x - 1) - Y > I

The corresponding )Io,()(; pro grani will bc

. factp(O, 1)

factp(x. z) - i- is x-I A, factp(,r 1 .,) A is .r*

The is constri(ic i, ise l in ( 1.( t fl 1r], i;I iu ,, ( d n a 11r 1(1 ic expression.



Quicksort

Here i- a T.ABLO(; progran that uses quicksort to sort a list of numbers. It comlbines a
lOl)(; -stvle relational subprogram for partitioning with a LISP-style functional subpro-

gram for sorting.

t. qsort([]) = ' '

2. qsort (.r o u) = append(qsort(ul ). .roqsort(u.))
partition(x, u,,ul, u)

3. partition(x. 1 [ [[])
-i. partition(re, you, yo ul, u2 )

y < x A partition(x, u, U1 , u2 )

.5. partition(x, yo u, u1, you 2 )
- > x A partition(x. u, u 1 , u 2 )

The assertions in lines 1 and 2 form the sorting subprogram. Line 1 asserts that the
emptY list is already sorted. Line 2 specifies that, to sort a list xou, with head x and tail
u. one Ahould append the sorted version of two sublists of u, ul and u2, and insert the
element r between them; the two sublists ul and u2 are determined by the subprogram
partition to be the elements of u less than or equal to x and greater than x., respectively.

The assertions in lines 3 to 5 specify how to partition a list according to a partition
elenient Y. Line :3 discusses the partitioning of the empty list, while lines 4 and 5 treat the
case in wli( h the list is of the form you. Line 4 is for the case in which y., the head of the
lit. i less than or equal to x; therefore, y should be inserted into the list ul of elements
11t greater than x. Line 5 is for the alternative case.

TIhe append function for appending two lists was defined earlier.

4. Comparison with PROLOG

Functions and Equality

While 111?()[,OG programs must be relations. TABLOG programs can be either relations or
functions. The availability of functions and equality makes it possible to write programs
more naturally. The functional style of programs frees the programmer from the need to
introduce many auxiliary variables.

V ( an compar(e the t'1tO0(; and TABLOG programs for quicksort. In TABIO(;. the
prograni uxses the unary function qsort to produce a value, wherews a IPROLOG program is
a binary relation qsoitp: the second argument is needed to hold the output.

Th se('( ( asser'i io in the "'..\ 131O(; program is

qsort( xo ii) = append(qsort(n1 ). xroqsort(u 2 ))
partition(.r. i. t )

5



The corresponding clause in the PROLOG program will be something like

qsortp(xo u, z) - partition(x, u, ul, u2) A
qsortp(ul, zj) A
qsortp(u2, z 2 ) A
appendp(z1 , x o z 2 , z).

The additional variables z, and z2 are required to store the results of sorting ul and 1k.
This demonstrates the advantage of having functions and equality in the language. Note
that. although function symbols exist in PROLOG, they are used only for constructing (latia
structures (like TABLOG's primitive functions) and are not reduced.

Negation and Equivalence

In PROLOG, negation is not available directly; it is simulated by finite failure. To prove
not(P). PROLOG attempts to prove P; not(P) succeeds if and only if the proof of P fails.
In T.\BLOG. negation is treated like any other connective of logic. Therefore, we can prove
formulas such as -member(I, (2, 3]).

The TABLOG union program, described earlier, uses both equivalence and negatioll:

union(]. r)

union(xo u. v) if member(x, v)
then union(u, v)
else (xounion(u, v))

-imember(x, [])

member(x,. ou) (x = y) V member(x, u).

Here is a possible PROLOG implementation of the same algorithm:

unionp(xouv,z) -memberp(x,v) A unionp(u,v,z)

unionp(xo u, c, xoz) ,- unionp(u, v, z)

unionp([ .v', )

memberp(x, xou)

memberp(x, yo u) - memberp(x, u).

Changing the order of the first two clauses in the PROLOG program will result in an

incorrect output: the second clause is correct only for the case in which x is not a memlber

of c. The TABLOG assertions can be freely rearranged; this suggests that all of them can
be matched against the current goal in parallel, if desired.

Unification

The unification procedure built into PROLOG is not really unification (e.g., as defined
in [Robinson 65]); it does not fail in matching an expression against one of its proper

6



subexpressions since it lacks an occur-check. When a theorem prover is used as a programn
interpreter, the omission of the occur-check makes it possible to generate cyclic expressions
that may not correspond to any concrete objects.

The unification used by the TABLOG interpreter does include an occur-check, so that
only theorems can indeed be proved.

5. Comparison with LISP

I SP programs are functions, each returning one value: the arguments of a function iust
be bound before the function is called. In TABLOG. on the other hand, programs can be
either relations or functions, and the arguments need not be bound; these arguments will
later be bound by unification.

We can illustrate this with the quicksort program again, concentrating on the partition
subprogram. In TABLOG, we have seen how to achieve the partition by a predicate with
f(ir arguments, two for input and two for output:

I. partition(x, [], []J.[])

2. partition(xyou,you, u2)
- y < x A partition(x, u, u 1, U2 )

3. partition(x, you, u,you 2 )
y > x A partition(x,u, ul, u 2)

The definition of the program partition is much shorter and cleaner than the corre-
sponding LISP program:

highpart(x, u)

if null(u) then nil
ele-if x > car(u) then highpart(xcdr(u))
else cons(car(u), highpart(x, cdr(u)))

lowpart(x. a)

if null(ti) then nil
else-if x > car(u) "

hen cons(car(u), lowpart(x, cdr(u)))
else lowpart(x.cdr(u)).

Scan el rate the I w() sIll)l ists lit LISP simultaneously, hut this will require even more
pairing and d(COil)osit 1io.

Note that unification also gives us "free" (ecomposition of the list argument into its
head and tail: in the LIS' program, this decomposition requires explicit calls to the func-
tions car al cdr.

7
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6. The Deductive-Tableau Proof System

In this section, we give a brief summary of the Manna-Waldinger deductive-tableau proof
system [Manna and Waldinger 80 and 821. This proof system is used as the TABLOG
interpreter. We describe only the deduction rules actually employed in it.

" A deductive tableau consists of rows. each containing either an assertion or a goal. The
-- assertions and goals (both of which we refer to by the generic name entries) are first-order

logic formulas: the theorem is proved by manipulating them. The declarative or logical
meaning of a tableau is that, if every instance of all the assertions is true, then some
instance of at least one of the goals is true. The assertions in the tableau are like clauses
in a standard resolution theorem prover-but they can be arbitrary first-order formulas,
not just disjunctions of literals.

The theorem to be proved is entered as the initial goal. A proof is constructed by adding
new goals to the tableau, using deduction rules, in such a way that the final tableau issemantically equivalent to the original one. The proof is complete when we have generated

the goal true.

Deduction Rules

The basic rules used for the program execution task are the following:

" Nonclausal Resolution: This generalized resolution rule allows removal of a subfor-
.-.. mula P from a goal 9[P] by means of an appropriate assertion A[p]. Resolving

the goal

[P)

with the assertion

provided that P and are unifiable, i.e., PO =6P0 for some (most-general) unifier
0, we get the new goal

not(A'false]) A 9'[true],

where A' [false] is AO after all occurrences of PO have been replaced by false, and
similarly for 9'[true]. This deduction rule can be justified by case analysis.

The choice of the unified subformulas is governed by the polarity strategy [Murray
82]. A subformula has positive polarity if it occurs within an even number of
(explicit or implicit) negations, and has negative polarity if it occurs within an
odd number of negations. (An assertion has an implicit negation applied to it.) A
subformula can occur both positively and negatively in a formula. According to
the polarity strategy, the subformula P will be replaced by false only if it occurs
with negative polarity and the subformula Q will be replaced by true only if it
occurs with positive polarity.

o Equality Rule: An asserted [possibly conditional] equality of two terms can be used
to replace one of the terms with the other in a goal. If the asserted equality is
coniditional, the conditions are added to the resulting goal as conjuncts.

8



Thus, suppose the assertion is of the form

and the goal is

where s and are unifiable. i.e., sO = 90 for some unifier 9. Then we get the new
goal

not(A'[false]) A '[t'],

where A'[falsej is AO after all occurrences of the equality sO = tO (which should
occur with negative polarity) have been replaced by false, and where g [e] is 0
after the replacement of all occurrences of the term sO by tO.

The reflexivity axiom for equality x = x is implicitly included among the asser-
tions of every tableau.

* Equivalence Rule: The replacement of one subformula by another asserted to be
equivalent to it. This is completely analogous to the equality rule except that we
replace atomic formulas rather than terms, using equivalence rather then equality.

" Simplification: The replacement of a formula by an equivalent but simpler formula.
Both propositional and arithmetic simplification are performed automatically by
the TABLOG interpreter.

While nonclausal resolution and the equivalence rule can be performed unifying arbi-
trary subformulas, the TABLOG interpreter applies these deduction rules unifying atomic
subformulas only.

7. Program Semantics

The logical interpretation of a tableau containing a TABLOG program and a call to it is
the logical sentence associated with the tableau: the conjunction of the universal closures
of the assertions implies the existential closure of the goal.

The desired goal is reduced to true by means of the assertions and the deduction rules.
The variables are bound when subexpressions of the goal (or derived subgoals) are unified
with subexpressions of the assertions. The order of the reduction is explained in the next
section. The output of the program is the final binding of the variables of the original goal.

We distinguish between defined functions, whose semantics is defined by the user pro-
gram. and primitive functions, which are either data constructors (e.g., o). or are built-in
and have their semantics defined by attached procedures in the simplifier; for example. an
expression like (2 + x + 5) o [] is considered primitive and will be automatically simplified
to(x + 7)o[].

As in PtROLOC, variables are local to the assertion or goal in which they appear. R-
naming of variables is done automatically by the interpreter when there is a collision of
names between the goal and assertion involved in a derivation step.

rhe variables of the original goal are the output variables. The interpreter keeps their
binding throughout the derivation; the same variable name can be used for a different
purpose in other assertions or goals.

9



8. Program Execution

Every line in a program is an assertion in the tableau: a call to the program is a goal ill

the same tableau.

The tableau system provides us with deduction rules but with no specific order in

which to apply them. To use it as a programing language. we have to specify the order of

application both for predictability and for efficiency.

The proof system is used to execute programs in a way analogous to the inversion

of a matrix by linear operations on its rows. where we simultaneously applyN the same
transformations to the matrix to be inverted and to the identitv matrix. In the program

execution process, we start with a ta)leau containing the assertions of the program and a
goal calling this program; we apply the same substitutions (obtained by unification) to the

current subgoal and to the binding of the output variables. A matrix inversion is complete
when we reduce the original matrix to the identity matrix: in TABLO(; we are done when
we have reduced the original goal to true. At this point, the result of the computation is

the final binding of the output variables.

Although in the declarative (logical) semantics of the tableau the order of entries is

immaterial, the procedural interpretation of the tableau as a program takes this order into

account: changing the order of two assertions or changing the order of the conjuncts or
disjuncts in an assertion or a goal may produce different computations.

The user for his part, has to specify an algorithm by employing the predefined order of

evaluation of the tableau. At each step of the execution, one basic expression (a nonvariable
term or an atomic formula) of the current goal is reduced. The expression to be reduced is

selected by scanning the goal from left to right. The first (leftmost) basic expression that

has only primitive arguments (i.e., that contain only variables, constants, and primitive
functions) is chosen and reduced, if possible. Matching the selected expression against
assertions is done in order of appearance.

This is best explained with an example:

To sort the list [2, 1,4.3] using quicksort, we write the goal

z qsort([2, 1,4, 3]).

To execute this goal, the expression chosen for reduction will be the term qsort([2, 1, 4, 3]).
7.. i.e., qsort(2o[1,4, 3)). This term unifies with the leftmost term qsort(xou) in the second

assertion of the quicksort program,

qsort(xo u) = append(qsort(u I x oqsort(U2))
- partition(x,u,ui,u2).

According to the equality rule. it will be replaced by the corresponding instance of the

right-hand side of the equality; this is done only after the unifier

{x-- 2, u-[1,4,31}

10



is applied to both the goal and the assertion. The occurrence of the equality

qsort(2 o [1,4, 3]) = append(qsort(u ), 2 o qsort(u2))

is replaced by false in the [modified] assertion, the occurrence of the term

qsort(2o [1, 4, 3])

is replaced by the term
append(qsort (u 1), 2 o qsort(u2 ))

in the (modified) goal, and a conjunction is formed, obtaining

not(false -- partition(2,[1,4,3],umju 2) A
z = append(qsort(u 1 ). 2 o qsort (u.2 )).

This forimmula can be reduced by the simplifications

(false - P) => not P

and
not(not P) = P

to obtain the new goal

partition(2, [1,4, 3].u,,u2 ) A
z = append(qsort(ux),2oqsort(u 2 )).

Continuing with this example, we now have a case in which the expression to te reduced
is an atomic formula, namely,

partition(2, [1, 4, 3], u, u2 ).

This atomic formula is unifiable with a subformula in the second assertion of the partition
subprogram (with variables renamed to resolve collisions)

partition(x, you,you. U4 )
- y < x A partition(x,u, u3,u 4 ).

Nonclausal resolution is now performed to further reduce the current goal. The i unitier

{x - 2, y - 1. u -- [4,3], U I1 - lou3 , u2 - "4

is applied to both the assertion and the goal; the formula

partition(2, [1, 4, 3], 1 a,: , u.)

II



is replaced by false in the [modified] assertion and by true in the goal. Once again a
conjunction is formed and the new goal generated (after simplification) is

partition(2, [4, 3], u3, u4 ) A
z = append(qsort(lou 3 ), 2oqsort(u4 )).

Eventually we reach the subgoal
[1,2,3,4],

where the right-hand side of the equality contains only primitive functions and constants.
The execution then terminates and the desired output is

[1,2,3,4].
Note that some functions and predicates (e.g.. o in this example) are predefined to be

" primitive: an expression in which such a symbol is the main operator is never selected to
be reduced, although its subexpressions may be reduced.

Backtracking

If the selected expression cannot be reduced. the search for other possible reductions is
done by backtracking.

In PIROLO(; each goal is a conjunction, so all the conjuncts must be proved: this means
that, when facing a dead end, we have to undo the most recent binding and try other
assert ions.

In TABLOC the situation is more complex: each goal (and each assertion) is an arbi-
trary formula. so it is possible to satisfy it without satisfying all its atomic subformulas.
Therefore, when the TABLOG interpreter fails to find an assertion that reduces some basic
expression, it tries to reduce the next expression that can allow the proof to proceed. In
the case in which the expression that cannot be reduced is -essential" (for example, a con-
junct in a conjunctive goal), no other subexpression will be attempted and backtracking
will occur.

During backtracking, the goal from which the current goal was derived becomes the new
current goal, but the next plausible assertion is used. This is similar to the backtracking
used in PROLOG.

The Implementation

A prototype interpreter for TABLOC is implemented in MACISP'). The imtplemented system
serves as a program editor, debugger, and interpreter. All the examples mentioned in this
paper have been executed on this interpreter.

The backtracking mechanism provides a simple way of changing the interpreter so

that lazy evaluation can be employed- i.e.. so that attempts can he iuade to evaluate
expressions even if they have nonprimitive arguments.

Because the interpreter is built on top of a versatile theoreni-proving system, the exe-
cution of programs is relatively slow. The interpreter now handles complicated cases that

might arise in a more general theorem-proving task, but will never occur in T.,\BLOG. We
hope that performance will be improved considerably by tuning the simiplifier and utilizing

*:2 t ricks from PlROLO; implementations to make the binding of varial)les faster.
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9. Related Research

Logic programming has become a fashionable research topic in recent years. Most of the
research relates to PROLOG and its extensions. We mention here some of the work that
has been done independently of TABLOG to generate languages similar to TABLOG in their
intention and capabilities.

While the deductive-tableau theorem prover used for TABLOG execution is based on
a generalized resolution inference rule, [Haridi 81], [Haridi and Sahlin 83], and [Hansson,
Haridi. and Tarnlund 82] describe a programming language based on a natural-deduction
proof system. They do allow quantifiers and other connectives in the language but the
syntax of their assertions is somewhat restricted.

[Kornfeld 83] extends PROLOG to include equality; asserting equality between two ob-
jects in his language causes the system to unify these objects when regular unification fails.
This makes it possible to unify objects that differ syntactically. Kornfeld treats only Horn
clauses and does not introduce any substitution rule either for equality or for equivalence.

[Tamaki 84] extends PROLOG by introducing a reducibility predicate, denoted by C>.
This predicate has semantics similar to the way TABLOG uses equality for rewriting terms.
This work also includes f-symbols and d-symbols that are analogous to TABLOG's distinction
between defined and primitive functions. The possible nesting of terms is restricted and
programs must be in Horn clause form.

OBJ [Goguen, Meseguer, and Plaisted 82] is also related to logic programming. It is
based, however, on the algebraic semantics of abstract data types and equational theory
rather than on [resolution-based) theorem proving in first-order logic. OBJ 1 is an advanced
implementation of the language that allows parameterized and hierarchical programming.
OB.J 1 includes system features for convenience and efficiency; it uses one-way pattern
matching to apply rewrite rules rather than two-way unification. [Goguen and Meseguer
84] describes EQLOG, the extension of OBJ to include unification and Horn clauses.

There are PROLOG systems, such as LOGLISP [Robinson and Sibert 82] and QLO(;
[Komorowski 79 and 82] that are implemented within LISP systems. These systems allow
the user to invoke the PROLO interpreter from within a LISP program and vice versa. In
TABL3OG, however, LISP-like features and PROLOG-like features coexist peacefully in the
same framework and are processed by the same deductive engine.

10. Conclusions and Discussion

The TABI.OG language is a new approach to logic programming: instead of patching up
PROLOG with new constructs to eliminate its shortcomings, we suggest a more powerful

deductive engine.

The combination in TABLO( of unification as a binding mnechanisim, equality for speci-
fying functions, and first-order logic for specifying predicates creates a rich language that

is clean from a logical point of viev. A,, a consequence, programs correspond to our HO 1i-
ition and are easier to write, read. and miodifv We can mix LIlSP-style and PHOL()(-st%,1c
programming and use whichever is n, t ue cnmv'ement foir the problem or subproblen.
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By restricting the general-purpose deductive-tableau theorem prover and forcing it to
follow a specific search order, we have made it suitable to serve as a program interpreter;
the specific search order makes it both more predictable and more efficient than attempting
to apply the deduction rules arbitrarily.

While the theorem prover supports reasoning with quantified formulas [Manna and
-Waldinger 82; Bronstein 83], the ramifications of including quantifiers in the language
are still under investigation. Quantifiers would certainly enhance the expressive power

of TABLOG. but we believe that they are more suited to a specification language than a
programming language.

It seemn very natural to extend TABLOG to parallel computation. The inclusion of real
negat ion miakes it possible to write programs that do not depend on the order of assertions.

The extension of TABLOG to support concurrent programs is being pursued. If the

conditions of the assertions are disjoint, several assertions can be matched against the
current suhgoal in parallel. In addition, disjunctive goals can be split between processes.

If there are no common variables, conjuncts can be solved in parallel; otherwise some form

@1 connmumeiation is required.

The or-parallelism and and-parallelism suggested for PROLOG are applicable for TAB-

LOG as well. The or-parallelism of PROLOG relates to matching against many assertions;
in T.\BLOG or-parallelism is possible within every goal, since, for example, goals can be
disjunctive. In TABLOG can other forms of parallelism can be applied to nested function
calls.
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* ,qentences composed of atoms and logical connectives.

Sentences are quantifier-fre. We sometimes use infix notatiotn for fiution and relation syrn-

bols (for example, x + a or 0 < y). An expre.,sion is a terni or a sentence. Ail expression is said

to be ground if it (outains no virialbhes. Certain (f the symbols re (h'clareld to) b' priltitivc: tliese

are the 'omplita)le synbols of mir programnming language.

Let c, s, and t be expressions, where ,s and t are either both senten(ces or bothi terms. If we

writt e as e[s , thou e[tj hent es the result of rep lacing every occrrence of ,i ill c[,s[ wiIi t.

We loosely follow til(' terliio(logy of' RobislSi 179]. We (enote a sitblelititioin 0 b~y {1: l -
, -- t2 .... , ,,4- ta}. F r aty expression c. tih(, ,xl)ressi()I 10 is ti( r('.llt of apl Ily l 0 to c,

obtaUllIt'd by si lilttu'(,()sly V'lla'ili1; (,v(,ry o( lel'rli e, of th(, vauiabe ., iii c w i h li, I 'r,,por ling
terin t,. We shall also say that o.0 is al Instiice of e.

Variables ill Sentences arc gi,,ven al imiplicit universal quantilication i a sentece is true iulehr

a given int erprelat ion if and oil1v if (ev('ry instance of tit( siitcuce is true, and if and only if every
/- grolin(l instale, o[ the s('itee' (i.e., al instaite' that contains no) variahles) is true.

Let c, R, arid t be expressions, where .; and t ar(, cither both seennues or both tiriti, and let
Obe a suib)stitition. If we write as e[.-}, the, to[i] d(eniotes th( result of replacing every occuirrciec

of ,;f ill CO with t.

We now describe tlie basic notiois of d(eduetive progranil sylitihesis.

SPECIFICATIONS AND PROGRAMS

A specification is a siati ,iit of ti(, piurpose of tihe t(,(Isired program, wlich n(cc(d give lio
indication of th(e midlhod by whi(h that purlpose' is to be achiev(l. [i Ihis paper we (orisider
only appl7icative (or functional) prr()rams, which yiehl an outpuitl ltt adter io data strctirtiur(,s and
iprod(ie 1n0 othr sile (,l'fets. The pel)(fic'atious for thes' iprogram,i have th(' foirm

f(a) f- ild z stch that ,R [a, z]

where P [(1a.
Il (It her words, the lIrogr;rm f we walt to r'orrs ur(t is to yil, for a given input a, ;n out, ut z

satisfying tI(. oupuLlt conrtition .z[,f. ;[, provid ( l that ti(. riilpit a s;;tisfirs lw Inputt cordit,,l P[a].
Ill ()th( words, z is to satisfy th( mlut-output coindiliori

if PkiI
then .[a, z].

.(1r ('Xa pilh', Silpil)ls' W ' wauit to 5i1(,('ify the pr()grairr ';rt lit yi'ld i !i',d It ti , Z t llt is

*'. within ai give'li Ic.hlir, nri I t'ss, tlli ,/r, ti(' I 'x;tot S(luAr(' root It (I a give'n rinoiti gltive rid iitii r
r. Then w' riiglit. write

.qrt(r, i) d-- h zll " suc'h t hat.
2  , r nd rot {( )2 < r]

" WIllre 0 < r and () < ,
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[i other words, we Want to hit(d al ou t put z satisfy ing thle outp1 ut cotiiLiori

Z2 <r and not[Z (2< ]

providledtihat thle inputs r and (satisfy tite inililt condition

0 t< r anid 0 <(..

The al ove s p iilr(- toot ,pcc ificat tot is niot a prog"rami and (lops not inrdicate a part ictirlar methI od

* fir totipilti,- tit' squtare rttot it 1lescribte, tite ilipuit-olitputt behavior oh itaty protgramis, eriployjig

Ii! h'tC11 itt Llg titIiII riisat i
1 perthaps produc ig dilferezit outputs.

The tgr(,t We ct~il der are sets of* expressions of the forin

* where t, is ;a primtie t'rtin. i.c., onec expresst'tl eit irly ill the( vocabulary of our ptograruntiing

* ~ ~~ ~~ languge. ts prtogratins (atlitiit Im utiailly r('(lirsive i.. we r('gartl. thet kinctioti symbilols f, as
* jttriluit ivt. Ill t Itt' ualway, sire ;ia protgtatti iniciates a mrethodl four compi~utintg arit ottpit .For the(

mo st pa;rt tii this paper wt' Shll corliditlc pro"tniis conlsist ng of only a single expressionl f(a) t'1
wii~ miay be recursive!.

fit a give tiiiIheory,.ta pro gratii f is saidl lo satti.sfy a specification of thie above forit if, for ally
1 IL Si [-1Vili I It(' inpu)1t (oitthiititi P1a]. thec pr'tiratin f(a) tetrmiates( and( p~rodluce. ii ott~

fa sfiu I lle otitput cotitlitiont R~a, ti.

DEDUCTIVE TABLEAUS

ThIt' fidtamiicrtal st ruin-vireof outr sysi (ei, tli(' (1(thuct rvt taleati, is a set of rows., eatli of which
tritist cotlit oi a sct'lti(e. r'ither arl (tsscrtim)i iir' a goal: ally of the(se' rows imay coti aiti t ('xpressioli,
tit(- matjtl et'iryJ. Ali exairplt' of a tableau follows:

assecr t it oIris goals 0 1FrIrts1 F ---. ____-

£Z[a, zJ z

* i. if qJ(ui)

'hert R1t 0J

q((&)0

l~tre ?i auth z7 an'- variabics, and~ a arid 0 akrc conistants.

I Iit givitii iiit rlrt at Olm, a tblhdati is trute wliertevt'n theit' foltiwiiig coindhiititn hiolds:

11 ;ill ru1st ;tricts4 'f taItI tf t It' asM'it ions arc' trite,
thin~ titeitvt aute c f atl Ictst mtt of Ithe gta is t rite

L* -7 - 2. . ' &-*



Equivahuit ly. the ta;b leaii is truie if soijie inst ance of' at least onc Oe f thle ;isse-t ions is false or sonie
iI istialiCe Of at lealSt oIic Of tile goals is t riie. Thus, thle above tAl ial Is t rue if P jaJ is fa-lse, If

if q(b)
then R~[b, 0J

is false, if Z (a. c] is tilne, or if (() is true (ariioig other p~ossibilities).

III a givenl theory, a tabicall is said to be valid if it is tirue inioer aily itiodel for the theory.

Ui fllr a gi6ven i litcri)retation uil ford a given spcificationI

f f(a) 4- finid z siucl I hat q[a, zj

it goal is satid to have a suitable: out put entry if, whenever an inistatice of Ihli goal is t ru e, the
corres)ondinhg instanice t' of the 01tit entry will satisfy the iput- output con (litioll

if P1,j

(If' tilie goal hats Tmo ('XjIicit oit put enit ry, then it. is said to have at sintakble (litit. ent ry If, wi teiever
*an illstalice of* thei goal is trule. aiiy I eri t, sat isfies t he iil)it -mit )ilt cotidit ion.) Ali assecrt ion1 1s saidl

A ~to have a sulitable olt])Ilt enitry if, whenever an instancee (If tih' assert ion is false, the' cor('csioidillg

ilist'allc(' t' (If thle oIltj)1It entry will satisfy the inI )ilt-oltj)ut cond~it ion.

Example

III tlio' theory of thIe ro'al 11111 ll)(rs, consLider'l thel( square-re of s1imicatioil

,qqrt (r, ) <=s findl z sutch that

<2  r and not [( < ~ r]
where 0) < r and 0 < c

and~ the following tableaui:

assertions 1 goals-

I . I) < r and

'2. -2 < r and
not [(Z f )2 < r] Z

.3. riot If2 < rl

This tableau Is valid ii In Ili teory (If real tin i -s. loaie l i(l('i'de ally Ilii)(l(l of Ihlo theory,

cit iur thec aisse-rtIou) (whlich hi,ts 1no var-ibles') i, 1,IM' ()I. sn(i1c iiilaniei (f, ((III ot, IhIn two goal1s. is4

ti-i1c. (III pail icular, the inist i c (If go dl 2 AdhI w hio y aktgz to be' y'r it 5(11 is trlil'.)

atW

fl i . ,. e
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li illaiy model for the theory. tihe out put eut ries of the above tableau are sitable for tile
square-root specification. In particular, if somec instance of goal 2, obtained by rep~lacing z with .9,
is true, thcl .9 will satisfy the input-output condition. That is,

* , r!O<r anti O<c

then s 2 < r and not[(s + )2 < r]

is trute. Also, if assert ion 1, which has rio output entry, is fallse, then ilny terir s sat isfies the above

condlitioni.

a~ne givI'1 illit epietat ionl r id for' at ''iVnil S)Ii(jCt lo, two tlibliLui5 'I andi~ 2 hi.v( I hie

T7 is true irirder 1
it' arid( only if

is t rite idctr I

4 -. Ithe output entries of T2 are suiitalc

III a gi vei thclory waid for a gi veni spec ificat ion. two t al ~i(ai is are rqiivatl(:lt if, ii Ir airy model I
for the theory, Ilie ilevalmirig ol the two t allealis is thle Sar~ie.

PROPERTIES OF A TABLEAU

Let irs- 'orusider aI partiidiar theory adi a Tpatiillal spccificidimoi, wich will Iot It rerori fixed
ilirotighiirt I iis discirssiorr. We shiall lise ther b(illowlil" ng jirijie (e4 of tableaul:

9 Duality Propcrty

Anry t :dleari Is equivalerit to tire oile obtainled by r-emiovirig an asser-t on and addling its nregationr

% ias at new goail. with the salic orrlt itit enrtry. Similarly, arty taIcilearIis cijirivaletit to I Ire oto' obtainled

by rviriovilrg a goal andr addhing its Iegat 0)11 as it 111w assert ron. 1,ir11s, we couild roaorage wit'h at
Sys(tIrII I hat hais rIt( goals ()r a sy.Atelr) that has Io ;ts~wr ioiris. hult I I( le im Iu imr bet weeli assertions

aridn g(oIls uhuts lrave '41111 1ot tnt ivc sigiiicairce.

0 RI(nariny Prtoperty

Any t hlecui is equiivalent to tire onie obtailned by systiviiatcahy rcniarnrinig the variIables of ally
-cw ne treeisely, we ma oy rvpilace arty oif the varial es of the row wit ii new variabi('s, making

surc tHat all occimriices of thre saineo variable inn thre row (irrelidinig I10 i the i outpatt entry)
are r('lha((ll by thle samel( variable and~ t hat distinct vatriables ill tire ro)w are replaced by (listilict
variabh's. lit (lit hr worls, I lie variables (of a row are (Imirritis I hat Ilray be rerranied freely.

-----------------------------------------------------------------------------------------------------------------------
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Ins~tance Property

Any tableau is equivalent to the oiie, obtained by inttrodlucinig ats a new row any instanuce of
* ~an existitig row. The new row is ob~tajined by replacinig all oCCIl Ileliel's ot (ert aml variables 5Ill the

vx ist in g row (including those ili t liv output entry) with teriiis. Note that thle exist illg row is viOL
replaced; tile new one i is simniply added.

THE DEDUCTIVE PROCESS

(oieiilcr a pakrt itlar theory andt the Specificationi

f (a) fi. 1111z slici that , [a, zJ
where.( P (a]

* We' form tile initial tableau

_________-________- 6o-u (7jis
assertions goals f (n)

P [a]

~[(Z z[ z

We mlay also iicli ole, inl thle ijlit jal tablealu (as ii asser-tion) aniy vallid senIt clue- of the thexory.

Note( that i lie out put ecnt 1*ies of t1hi t abical are stiitable: 1bider ally Illodel For tile t icory. if the
ii tial assecrtion P [a] is False, thl ally olit.plut iat islics the iiij)1it -olit-it conit lion viIcI 101sly: and(
if some11 ilistatie 2[a, tj of thle iniitilal goal is true, thec correspohIldilig inst anie t of tin' associated
m1ilimpt enitry sat islIil's the iiiput-ouit~pitt condiit ion. Fiirtleritore, thei valid ,entteiices ilL ncldcl as
inil kill asscrtioiis- canijiot be false.

We at I('1ilt to iShow thlat die abiove talvali is validl. We proctel by appilyinig d'dllct lol rules
I h,-t addI new rows withouit chaigig Ilie t-ahbhemi's Inlallllug illillay mjodel for the t licory. Ili other
words, tlinder a givenI Ijuodll. t hi-' tableau is triellfor apl~licat ion of the, I'I1it iavid only if it is true
aft erwards. and tile ouitput i'rtrivs are suitable before if kjjIll onlly If they ;Q-(' siiitahlej( aft'jerwards.
We dl('scribI lie (hdlt't ion rules ill the nmext section.

Thle lellult ive priocess con t ii ts ittil we obtajin cit her oif the two rows

trite t

where theu' ltjimt vutry t is lirimiitiVe, i.e.. exprevssed ecitir('y ili t ie vocalmtlary of olli programmling
latilgtage. (We regardl tbli inpit. coist ant a and t ( 11 1 lltoll Symibol f as jiriiiiit ive. ) At t his poIintt,
we derive tilie programn

f (a) '=t

. ,-.'.r .4: . -' .. .. * .A.
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We claim that t satisfics the -fiven specificationi. For, in alpplyinlg thei i(letjol ruci, wo have

gi iaratiteed t hat th li( w miot put eintries ir u ll if thle earlier ot itm cut riC are ;m ttalc. We
have seen t hat thle inlitijal out put ent ries are all sti it alht thlerefore, th linhal otitpuit entry t is aLlso
silible. Tliiis flicaus tliat, miller ally iiioilel, if the fi iiil goal trite is truitv or thle final asert ion fu1be

* ~~is false, thic corresponlding oultpui t enitry t will satisfy thle iliit-oiutpt it cond~itioni

then Zla. ti.

Buliti tler miv inllt the t rit h symboitls trae :111t fabic are trile and false. respeti vely. and hielice
fwill 111c ; l liliittiit 1 iit ettioit iml. TIlerchwu, 1lic progrini f() t- deVS SattiSt'y tHeP SpeCi-

THE DEDUCTION RULES

ltiortittis tf lit ( queiac-uitf iltriv~ttioti Wi puesetit. We bt Iii Wili tit, -iuiiplest lii hetitle,;.

THE TRANSFOR.MATION RULES

* ti p~cllk t)r ciii Iv~dctle eXplcs' sit For Lii 0;11 vi~ i. with IileI t ish ".~iti

P ndt true -

((A or 11) and true) o r D)I

L (A or 13) and D
7.-

W i Il i I he I I' rttl ;t i llcii t (ii ll t it( I~ ll( trIy ti ll ciii v. 4,1i~ i t

u fui 2 it,

We ''call replae ;t. sithti'iiii (a -b) t-(a 4+ b) W~illi tile teriii '2(a 1.

w eit lit , Il (..l r a l f- o m fi i- l i th l., It1,1 tI, s o A



WcIncliide a comlte Set of tritc-fa.sc tl;ulirt'Ollatio lollets, Sihas

not false - true

if P then false , rot P.

Plw;'tl oppliceloil of tlit'Se' I-iies call ('lillilidt I froml a tabiit row any occllreltict' of the( truth

-, .'~ hol tritc ;11(1 fal1se as it tiri)pir suibseniteiee.

Tiii Siiillii'>>- oftlie t ralnSforunatloll rukisi 5 (v ielt Since e'ach prodite' ani ('xjpl'ssiill equliv-

* ~ Llil i t'qi ii (ilk t it(' theo'try ) toI tIll, oic to WlilIt it is, appieil

* THE RESOLUTION RULE: GROUND VERSION

'FI'( rcohiiti(m i-iic ii( orr('siitllils to cast,' ilialysis III ifim ((i 0'ts(llig. Wet first 1 )it'cm'lt ft(e

vriiaul 'er.slia of the rle(, wlli~l aplie1(s to g-Illill goalIS. \\t (XIIess It Ilk t lic toiiiwiiig Iiotiitior1:

Issct' [oil goals fa

fjtruejif 1p
and thrri s

- ___ _______ j 9fal.le cls t

- Iilii he woo ipps (liC lll'll (ontains two groiiii guls dlld Y, Whom' ou1tput (lit IVIS

iI'*Lii.iI lt lli' t livcly. Slppw)wt Itrtlivi- tli;t 7 andi ll;tvI at toli siibsct'iit'iet P. Thien

m.I niLdeirive' ;Ll Ldild to oill k~hi'it'111WICICA goal; ibottLlitti iy n-p~ligl" Lii tliill'rll(('5 of P ill
- I TIL(. ii111!(Ill!,' Il (o'liillCltt'5 of p Ill , Witlli fa/.st. 01 I I i4 g itl' Iii ji l oti ll l tf Ile

- ii'iit~. i'( ilit jail (itl I-)- as(tit ti with till dii'Ve'i goii is Il l oli(Ilt iauai t'es-sili whio'st test

5 .v 111)d irr t I false, as propter a ilbsclit l'lio:~ -.. Wt' (.ll it 6oi1cl i'Ltt t pply trIul'-fetlse t ral Sfiru lhi on

* 1111c'S to ill'ilil dcveil g'oal.

?mf if r (b) 1irs

iLSwil'tiiiii- fluid

- ~~~ii'- h ) ii l I 'L ' Lit I I,( i cW lI l
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trtc fold (1(a) I ( , b)
a nd then a

not (if r(1)) then fab.e) j elsie b

By rcpeatcel ;tfpicat -it ii of traiislrimioii rutles this goal redutce.s to

Vt.

foilc of I IIi givenl goals li. nto lit 1it citrty. tile' detiveil outpuilt. t'iitry is tiot ai iiiiiitiiil
eII-slol it .. jtSimply thc iitjiiit o(ltrv I I iii' otil gvgi~i Il licitll('l glveli1 gii'Ll ltIsZ ;t oiutpuit

- iistijict, wi' 111a1 apply tili' [rule to ;I ti,1i ;LII(i itSClf.

Wt.\e, lixi iireseliteil the( lcsolutionitI ;i it aplidis tot o ,als. .Aceordiug, o tit( iali

fil'ppetty OF illal.hnwt'vcr, we ttiaiy ll:Ililhforlil ai ;lSWs('Ort f0il i ti 'IIII)IfV bV 1'gittjg it.
- Twfi'ore. wt, (,;ll aipply th lieiile toIII dit.a',crtioritl goal; ")i. or to t wo asscr5'l't101.

-Tite rcisOlu loft ruh' itiy lie rest[ rot e d by a IiitliritY of ratcyui (Murray 82j see also Nlaiiia andt(

- ,W ahliliiiger Stt aeonrill" ti wlI I i ' Ine Itit ailiq V tI Iti' I I tII'IIIs s s ItIo n II I IeIlI c of ill1

~11 IM. )i IV(' dull SOIitl( ii(Cirtiic(( Of itl~ 5 ig~ isi .nero' a sllitsolitlt( of t at atleau is

iead'L. is1I I~ itV, Or lMIt iV, 11 1f i IIi t ll tl' <inill if a rI'Spceit [veIy evenI ori ml lIIIII~lliri

tIs I ,W I Ii god, ,ils ; r(' 1)i'1 tI vi'. ;isscrItii II fre TIegaltve i f- CIc I IS( ut' .S 11 >iisviltl'cIa (cif then Q2)
is nsi lt''i toli wi lli t ii~ioo'ii ii odit0 ii oi ht I'a int. T1his St rat eY allows us toi

llisrlgafril titi (15'1( qaIIciiaiiu., of t lie ritle.

flit ]IS S11ow that li Ie lilt iiiil luli is sominl t hat is. iii a givcti 111 l hiOf thu', lir(Iv mnid For a
gveil >pWI'II LIIOII. titelli ltntbeui i~oi'hfr oi4't~l afte iilt[ (d, ofl ll(,h.

IIt ially Sillh 1ii' to -1liW thakt .IIt Ilii derive'd goal i I rue, tlni at haM' o1w0 oh' Iii givenl gOals is

rite. and If' tw ,](Ivl i iit oil itric<' lt' siliiabf, SO Is (If( ifiriv'ii iiipt entry.

Suliji o i' hen drviid oal ( T~ftrio, fiile - fii') is trio'. ifot licit i its ('oljilili I .71trIit-I Mid

;1.e 1t ;lc We it igitf Isi~titci twoi camls, li'cii'tdiiig, ii wilo or' iiilot lic ciniiiiiill

ilisiiiti'iiic : H trtue' mi- fki' Ill ill' i aeIll wilhit I" 11-i1c, Owi giuius oal Y2 ha s ie( Samiis

truith-valuec ;I, tfi( ui ilit F:/ruf thtis,i TI! it lici [it lii' (in Ill klielP 1, akce the( goal
2 1 l l~tu on'111 trl - al'-ti illis 11su 1u fit is ct in. hei uItli ea ', ii

Now ;a"'Itics thalt theit ii(,tjii l i IIs arc' Sit ill tlc To ,hoiw tha~dt It( l i i' o uti'vii it tt ('lit -y

is sulit afdi'. Wec -ifiiiin 1,1 nth II hive I goal is t rue Otld t'Stalifisfi thfat t ie( i('t'ivci5d oit plot enltry

S;Oat he, th fo'il o t-oi1fl it miii lli o(l WCi IIkV SCC seoti fl. ill t1 ii )IIs llWloii P is t1111C. the( given1

'Ise la I n ~ i is iii oi iI y Si, sitilifi)1 . it satisfies ti( l ie liit -tuiltp t colnlitin.

Stu IV~f. Iti fit', ca~c nI wfIis l I , a e flu' t fil SL > jliu tnit(ii itl-isit ll iiit i stim. lit either
ceI.u'. tfii'tefq I iu. , ('ii 1 1uo it 1'ti.f eXjut .-I'i m if th.1 t/o -i IS Ps icj I ii' iopu i[ut - l toiditiloll

ft"but tflii, ISI tw lu' irvef Iioit puit euttry.

ft 0-.*



TILE RESOLUTION RULE: GENERAL VERSION

We have' licscribcd tihe groiitiid version of the resoluitioni rule, wichl aplies(' to goals with niro

variables. 'Ac nlow Jples('t tinberejal versiont. wicih apiiii' to goatls with iivarlabcs. II ii 1 ,i ese,,

assert ions5 goals f (a)

t

701truel If P
and then s"o

90[fat.~j el.se to --

Mle )l((ci.*I I. slilplosI our tabileal ((ont ainis goals .7 mlld Whichi have 1no variables" imie cmono.

* (Tlis call be 4.ll llI'hl by relallillig thle variales ol' the roWS ;IS IeCCSS;LIry. according to) the rcilaring

* l~~~roperty. ) Snimse5I fun li('r that soli of' the Silblselltem-('s of* 7- and somec of tin' SlIbs('itei' of

h,~' L~tbblc. With a ms-ica 1ifr0;let PO ble tlii( mlilli('l 51(lictenlc('. Then we mlay dc('iVC
and( add to i~ tableaui the 111w go~al obtmieul by repllacing all occuirr('Ices of PO ill .70 with true,

- ri'iilp];vii;ill 41 m-ruln('l(s of P) ill ~0 Witih falise andi formiing th licoiijliicton of the resnilts. The
;>((I'Ilc oult '11etry Is a condl~it ional expression1 Wils test is th Ii(' icid slibmeiitciice P0 and~
wil thrn~ lu io'and vI cliai 15 arc the correspuoiiolinig in itamiles :40 anl ol0ID respect ivliy, of the

Ini I'th-'r Wordis. to apply t he gvnil versnon of the nob' to 7 aind a, we' apply the grolund
* ~~~Vcrsiollif (Iti nile lo 0170 andi 00. 'ili somliidlc('5 of Ilii gei versioni b~llows froum thei( Soiile'ss

of' tile ,roid von-Sior. The pollarity shrateg applies as before. If We Wish to apply thev ruIle to all

aii'rT oll anIl~ A go;LI or to) IIO asseonibls, WIV (*,II regard lie assertions15 as go~als by tIegat irg I hIvI,
ais ii I rll liolt 1,150'.

For exapleol' 5111110 our' Olltabl(1il conitains the rows

asso'rtiiuis goals f (a, b)

< it aIrnd

f(fr. i,) r and

'I'i (, ho oxcdIIloll suhcnt 05c dtrl' uniic; at liost -gi'iioril uiier is

0: {o-a * b f (ah).

NW
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Thci Msu t ~'iices arc respectively positive a~irii-t We' d ii i m 0h ic by the 1 iuotat ion., We mlay

- ~~ret,:ird tie( ;i~serti101 as it goal by ilegat ili t. By appllelttloll of th l iicd illiui io~i ii if tl le solultionf

rule, wve imy (derive the new row

true and1

[p~f(( b)) J
and ufi i)

ntif q(a, b)J
[then fal.Se]

B3y r ht 1Li~iv.t l of" tritc-filsi'e trll101-llat ill lilies . 1II[, goal iilii5to

1)(f (a, 1))
and g~fai b))

(a(, b)

d ~~Note t lIlt li1c 11,ilir 0, has ben aplied to all valrilalils ill theo' iVell rows, nlliii those ill the

(lit c('lV l i'eliM c ie 11 givenl aswirtionl has 1no out 1 ot enitry. thle derlvevl oitut1 t enttry 15, not a

* n~lilit joli.il express ion. Thlis applicat ion of tlie rule is inl accordanc withI the polarity strategy.

* '[lihe re iillut lonl rih aiid thec true-false t ranisformiat ion rules have 1ien slhowil by Murray [821 to

- ii ii~titiie a oiiiplteh sy.,tvin for first-order logic. 'lit(, polarity Art lt gy 11 -tiiitaiiis t his CoilipleC-

-w v iiil Issocid, ivi-coill.illltttiV(' IlIiiC;Iit lAlgoiilt hinl (& inl St jekef S 11) So that the as-

.4 ~Soellt )i' ;I.Ih (IolIIIIIllt;Lt IVe properties of such1 operators ats addit ionl aid conjunct ion can bo taken

tito ;1(.(oioit( ill tiiohiiig a liliiier thi11s, 7)(f () +~ () + q(a)) ) can lo' i ie~d with 1 p( (qI(y) f f(b)) i )

We leav init iodiiei two addit ioial rils to givveiail trealt eit toi CI'ijiilit lI;Old o 0her1 in-

portaii ekllions (Manila anld Wablingerl 1851), hblt t hise rule1s play no part ill thle portion of tite

ifirivii it) lie disciussedf.

Wishal iieeif thle ililIlictioli nih'1; tINS we' Ile'5(ibl next.

THE MATHEIMATICAL INDUCTION RULE

T[he robs -4 plc'itil so far do0 not llo~w lis to iiitiihndlce ;iiiy fInt vIt iVe cojist iict into1 thle

lii"r;tll. M.v' cilphy ;I siliglr' wll-l,0iii(itil illillict loll ri-le. Wic 1 Ii tow a); V;tli-ity of I Ileoics.

A will-f iiltiei reklion < ,,, is, one thfat wlit s iiii itifinlite i(l risiilg sc1iilicc((," 1.c., s(p(icicc((s

.r 2 ,13 ... uchthat

xr I' -r2 111d f2 >-, X3 a 7d4....

VI i. illI i 11 . ft1 li'>s,- I 11 oi relat ii ii < Is well-i roh ilhi I in It( lIe , wy of nlon iegat i ye itt egers, but

.lo II I hi f i .- o.-'d--il-.r
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Thle versitn o)f Hte wcIl-fmiiileil idlc o, m l ' we iled fol. the derivatji iS s xpressed as follovws

(I ltc geuxcrad version is inore (omplex):

S~uhppose oli liutja tahtleakx is

as ert oI IIS goals j1 IT(II)

R.[a, z} Z

SII I words, we arc attteiuIIt ItII' tot uilriI al pi)Ogiauit till 101. aLix jjttltjI i illiltt (L, yi(elds

all (Iitj)1it z ;at is4yillg thle iiiltiit -oiitptit coiiditiOhi

if P[aIl
thert Rlay, z1.

Ac(boLding to thet well-fotuiitletl Indtliioin I.ile. we miay prove this assouuuinl as our i~ito y
* po~~jtliesis that the pruograliu f will yield ain otputit f(.r) siatisfyiitg the saici ini~jit-oiutput conditionl

if P 'rJI

pr,)vI(Idl that x is less titan a wit h respect to soime wchl-foiund edl relation -< that is, 'x. a. III
* ~~otlI jr wordIs we i uxay add( to or ix tablealu Ithe ixow assert ion

I if x -,
then if P xl

T1he well-fuuiuthet I relat ionl -<,,, lised inl tle iixdliotiout rile is arii rary ando muost b~e se'hr'oteol ltor in

t het proof.

Ion() e-xamlurer, (otisidher the itlitial tableax obLaitlet fromt t hut sqitarc-rool specifictioni:

assertions goals Olqr (r, LS

0)< r anti 0 <

z 2 < ran
n10t [(z <-i) r]

-I ly 'i p i 1 1,11 4'r I i t wcI -)l- d x ii h rut i I 11 xiiC, WCi ii ;Lyu tt i tt' ntL5c as a ti'cw ;uswti i I)II h lt' d(110-

f(Ii hryluuttMtt'i5

If (x, ?,) ~, r
therlr if 0I < I nld 0 < 1)

.E'n Sjr(, ?v)1< I 2L7(
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hInother ffortls. we ~iieI~iutwi th;0t till' tp t othe sqiiarl-rlot pi'r dll wvceons! iltt

I wlilith Is c o:o ll elrlideIr lt11

Use1 I f th I - I 'li ti . t l tt IiiI L It tiw proo l ll ;I lli For go ,in r d cto o eii-s~i

riott

trtirr

r~~ li t c!I

I >~til t I f ifI t ' ~ t il tti i V itt,~ ~' t111 ' tu tIl oil t~'t

is ~ ~ ~ ~ 71; 0'' VdlL I- lit I . - iLI i t I l 0 t I ~ jl ~i ilu th- W iS it ii Iil t' 1 (lt11 t

K,. ' l~T i I i LAt L i 'i ii '' I Iti,.m (1 -orm Iil to "~, It fIhl-
1  

t t' i ltll ov' ~') 11( i

I I I i.' Itt it, T-14I (111 t111 to 111 -0a ( i I II It( ILo ~ c l it'-c I. It( lci i-i ty I lItl c a Y t ttill i ll ii s an

r t'I C_ 1111l t 1LIN L I I Y IL it( 111)1 il I L I it 'Ao I It( ~ LI i it lt'ditt 'lily ti o i t' itl (r, LIi] \t''i
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streiigthe (I* 0' tictilill( th oI)wVs to whviih th lt eu is app)Iliedl. III this moire gcnral versioni, thit

ride accounts for the introduetIIion of auIxiIly siilprogiaiiis into thc jm,urora litiiig (tr iucttul.

We shall avoid (listcussion of aimmxi ry 5Iul)[rograil 1 here.

We are n1ow really to p)iiseiit t most intcresting scenit, of the (citivaitilm of flit S([lart-root

program.

THlE DERIVATION

Rtecuhl t hat, III t~l he Iloy of Ival nliiiiiiilo I l1c 'pccifto~tio lie I( eald-IoIilwI M lne o l l(gI

i s

.-ojr ( r, ) =findI z: such thant

z 2 r andl not [( Z -t- )2 <K ]

* ~wlitrc 0 < r and1( 0 < c.

III otheri words, We "w;Liit to iliuld an etimaite z that is withiit toleraniitt less thani thet cxact'

sqi irc root of r, Wvhlire We may aussumeil thait r i5 tinnlig;ut IVt andl is pIosit ive.

We bctgiil accor(Iiiigly wvithi tlu tableau

F_ 0 1 piits

a 1srt1on goals - 2;-,r
I1. 0) < r and 0I < __ __

2. Lz r___ nf[Z'f) r] z

T11lc as.M'tioii ;1iii goal 4I iiiis t;iii L t lt( initit aiidI wfli t toi(iitioll5. Ieps't tively, (of the

, iV 'Cswihe;iLt ioil mItIC pitl cIt ry ) flte goul .4 th wit p)11 wu.Iiilblt thu pru)giani.

THlE DISCOVERY OF BINARY SEARCH

We an.' ;ulonit t( 1 apply IIIie rcnt.oition rutc to goal 2 iLnl tself. To liokt, this step i'ds(ic t.o

ilillliistail. let is write ain't ici copy of goal 2.

;,t.-~ f- < r -

We' ha~vie rcII;luii('( thli Vail c (d IIc i'second cop~y of 111c- goal' So thli.0 t he two) ci pier have Ill)

V'trida h'5 ii $ ( ill 1 11oll.

[lii hiox~i silSlti ( If th tw' xo coic~s of the goal aIut iuiiitalbh( ;it -iit uifier is

TIllr('fuI('.w ,(- ;iil aply)~ thc i(.-flItit ion rule lOv'eci li I111 t ()pc 4Jil 1 f g. I 2 t) ()tIl
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true find not t( + < ) rj /(l
*and then + c-

2 and not fals.e else i

B3Y app4lij(ilht 111of ti 150'11l 11 nuts, incililiig the uilce

It + it 2 u,

I IS ,4 gXLI ('alill be reduced'l to

2 K r if + ()2 <Kr
0, and then z + c

nt ± 2( 42 < r] else i

II eI ()lclll 11'v rcrcc the (.011j 011(1 s foi. pe)dagogicl ivI resolis ofnly; bll'(L1. we lIt( 1Lssoc at iVe-c0Hi-

mutlittivI iiiittin 0111. r ti(' al 1L ordlcr is irrelevailt.

Aicl-uliilg to goal 3. it ~lfi(5to lin(1d itrougher ('stimtIUt( Z. which is witliit tol('alIc( 2( loss
Ih.in , r, till ('xflt squ~arl' root, (of r. [For livn ('ithcrl 0 1 ' _; itscul, will lbe Wit hiiii " less thait V

- I~~~plclidill"g oil or(' 11101 ot ZF(is less8 thaii 0or ((Illal to y'+. Till, two I))ssilbilitics arc' illiist r;Lt('(

Ciasv: + - <( vi~ (Xlso: not 4-

GCoal 3 coolt aiis the' cs.('rltial id okz(f binary s';ir('l ats applicd to Htill shllar'-'oot 1)rbih'1I

Ailhoiili ll' (ld sccm llbl11) II' to its, it aiwOa' a~lmlost ill 111('liaI (ly ilIn IL(' Thei van.l'step
is iicLXrly tIli 11I(: ;lmy l)i1ttc-fonll csl'i1'('l procedir' Wotld (fis( ovI' it.

f'I'll( duivitioll lof goal 3 is logically st ra ilht forward, hut III' ilItilt i llelIIlI it 111;l Ill at bit

- "- ~~lflystl'riflIIs. lIvt its p;lI'.LIplr;l~sI thei reasoningt ini a mI0rc( gl~romtlic wi(V. Oumo' fl i (ld 2 l'xl11'svst

t ift t soI II ile 114 to i I II aI rca) til o't'el Z: 1 1 tch t \/ Ih 1 n tg to IlIl'11 if F-1 14e Ii I I I v14.

Otir rcwrl i i goail 2' ('xl)I')' vs that it is ciputlaly ;1l(.(Ictkibh' tol hll L Id1111l.le z >111(11 dhIaL .
* 1)) ~'h s to tl' he .~-1~I ltil l ~ I ) 'Al sld) f ill h clIltl t l 1 v ' I I lt (d I tIIsc o g I Is;

-c ;r 4' 4)1 ;11 sli I'd I I I I l 11 10 1 4 -1 V.ll ('i 4,1.1 ; ' 1W hIf II II I It i~ i a Ic\ .11',l -1 11 1V II I) in 2 II l l'

I 1. Wt di lo ,at 1.1a It Ill) 1111- Il 'i ol , W41) LIIlIgIII .1 -ttV. l 11-141)ll tt l a 11 1,(2 ) Wil

l01"On)''it IIIV~l, IW .0ILll 111, 1l r iim1>1 lelImig 14I1o114. oI1 till'- l(t111. o4 1i1c two silldl' lmics.

INTRODUCTION OF THlE H lCUJHSIVE CALLS

LO Iis ofitI II Ic 11 , 1'I v t Iol I I W I I W ( 1) Il W C11 11 )1111It' ill I C .(ll -1--, w m a
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°--.

then if 0 < x and 0 < v

then [.qrt(x, v) x and

riot 1 < r)

In t)ther words, xw assllic iiilii'tively t hat tle output ,sqrt(x, v) of the prograi will sat isfy the

input-output (olditimu for my iuuputs x and v suith that (:;_ v) -<,, (r, (). "lThe boxed sulstitenc(s

of "()a[ 3 anid tit( ind1uct(oion liypot hIesis are 1uitiable; a ilost,-gcneral inimfier is

.~- r, v - 2,, ,q rt r, 2c)}

We obtain (after true-false t ransforiatioin)

4. (r. ) (r, -) if [.srt(r, 2 ) + c]2 < r
and then sqrt (r, 2() + "

* 0 < r and 0 < 2c else sqrt(r, 2()% ___________________________

Note hat at. this point thre(' rectirsive(ails .sqrt(r. 2() have heefi introdie'd into the (output
ent ry. Th( conlitiou (0 < r tnud 0 < 2() ciisurs that the arguments r and 2( of th's, recursive
c(ills will .ati4[y tile iiijiut c(on(ition for th(, jro-raii, that r is niotiiegative and 2( is positive.

Thecmli in (r. 2() -<,,, (r, () ensures that tie iewly itr)ldc(ed rcacu.iv( (alls cannot lead to
a lii)terlili)L1 m ' uompulitatioln. 'l'h well-foui tiided rclalion -<w that s(rves s the i basis for thie
muiIlduction hS as yet unspecified.

W' o,i il those portions (f tt(' derivation Qit macomit for ti( iitr()duliclion of th( base (cse
iiand lieIn chwic( (f the w'll-fuiiid(d relation. Tf'lie final l)rogra~m we oblit,aiin is

,qrt(r, ) '-: if ( < (a'x(r, 1)

tHicn, if [mqrt (r. 2( ) +t- < r
then .sqrt (r, 2) (
cse .qrt(r, 2()

chice 0,

A f'w worIs (nit this program are in order.

I)ISCL.SSION OF TIlE P1R.OG(RAM

""i ' luuh,'VI;m lirst (.11(,(i . wl. ' 1llct'" ('i (n tolhrauw ' is r'aonuahuly > IF.ll. II'( is very big,
If:,t s. it imar(r. 1) fli ,i I l c , itimi ian -.iLkly bc tikim toi h 0. lm-, lb,..mse 0 r, we have

02 < r.

A\ndi bccausc rt~lr. I) <(wi' himive r tiiu I < andI bine r < (2 1 h at. is,

ntit t I r

- L

.' '*.- -'. . 1' -".:.'" .. *-ia '-.& i.,, -K.~ - . . ...,'. ", . . . . .". . .;,,. .'." ...,. -- .- ... . , . ,
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P,-.. -Vh III 1 this cas.S

.In! ~I I r(II,,I icirs Istnat c (10t r, 2() w I Ich is
* .. . . ..-. , t.rc''1Ig tllns (S malfutv Iy Iwill leave it less

II it. .. I w I s I I:1,11 Is idl-c d close

A ! ' Ilj I t l i 1 1 !j J i

If I iI, I iI tIjI I l'l'wlfcII Il IS (I f ti IlI, sl ri - rrj i v !

rec'tfsive(' (als.

Ou)Ir iiiiii p)1 IrifiL Isi sIofiI'wii, LI f 'u (liffcn hi' I r I h, itv t *. ':,'( 1

dmbI1s ;tI ifnterval withi i'ai' rcuiir' 1Ii I il DliIiii I l t jlIr %.i III ft-1191 ty.. tin
Nrecur~fsive p)rogramf iwin ils. ii.. wlicif thle f'(iirsive lullS w.1( iiit, 1 v-dI14'i

It is p( ssible to ol)t aiIi a Versio)f1 ( )f t It(I' I it ('lu e iV4 ' 01r n 'cijui hY lfII I' III11 r*%ItV ,l 1 1 i lif th11

d lII ive-t rldeini systeim. Altitinigl Ie Ilcii lHmIt 411III IN li r i i I,, rt )iru it it LII fIllI (IlijI

(it rcqilifis two ;Lddit jona;l inpu~ts) . It wa-;s this, (III jV;Lt I1o1 we 11h -III(vcrcd first bccwt-isl wI' Well

al'e;Lay f;Lfllljif with the4 iterfativ(' pilgrai.

* \X~~~~~' fitst fmind1( t hi' rI'i'frsivc plrwlrumf ini cxajinilift Il III m5'isll'irml'S ofI pilff4ly [formal I1('fiVlloU

step,1101, beot. lIis(' w~e i'Xpc)Cdo t 11(111 to l('il tol 3 hlg ilt bccawwlS( wVI were lmdliin, FIJI- sitr~l 4gw

('foleL 101118n that XVl lIlC 'iCk tio'f(lid. WIICfL WI' CI'fIIjfl('O thll pl'(alfNIl it)ti aly. We' sffspecO(l

anI ( r' iti I ticl (l('f'ion (f. WeV 1had1 Iiit 5('l'l plro~gramfi r lI t his 1olii ll bf'l', and10 we (lit ;Lil lly W(IIIIII

ANALOGOUS ALGORITHMS

Mo';mny bilitry-se~trch lg i~ll hllfs li~v, cliVO 1144ff d Ili'll it it affaiog(11f5 wayL. L0its f1(irst coniderO' 501110'

K' II]EAL-NTJMI3EI ALGORlITHMS

Slipposc a prlograinf to periform fit 1 l-filfftll'f dhi i ii is 5(ifi(I its follows:

divp(r_, () '- findlz stoltthat
z.- < 7- andi riot [(Z - ( ) < r]

-. e wer(' 0 < r and( ii < N' 101d 0 < I



itn other wordls, the programu is required to) yield a real numiber z that is within a tolerance c1ess

thanl r/s, the exact quotient of dividing r by s. We obtain the program

dizv(r, s, c)- if ( - K; r
then if [diiv(r, s, 2c) + c]-s <r

then div)(r, ,,, 2() + c
else di'v(r, s, 2c)

clse 0.

Thle rat oite for this progratt, like its dlerivation, is analogous to that for the real-nulmber

solimire root. The prograni first choecks whether the' error t oleranice is reasotally siumall, that is, if
s < r. If cis very big, that is, if r < ts, then the output, can lbe takmi safely to be 0. For

because 0 < r, we have

0 s < r.

Arid becauise r < c .s, we have r < (0 + ) ,that is,

not [(0 + c)s < r].

Thiis, o satisfies bot cojiinc t~s of the otti coniion inl this case.

Onl the ot lic hand, if (is sinmal, that is, if c-s K r, tite progra i kids at rougher oest inmate

div (r. s, 2(). which is within 2( h ss thani r/.,;. Tite prgal (*( isiolers whether ii creasitig this
estimiate by ( will le'ave it. less ilban r/.,;. If so, the rotigh estlimiatc minay be0 inicreasedl by (; if niot,
the rough eslt inte is alreadly (lose eniough.

The( tvori~tiii puroof for- this prograin is also analogous to I lm;Lt, for- t Ie( sqnarv root. Alt limigh
tit lie 1,rg1iuieO n is dliieolc Wilit eauh recursive ca;ll, fic o' otc argimiemi areO uiimi o'tl amid the
Calls arc o'valitatril onily inl the case in whjich .4 < r, Htt is, or r/.s. Thins, there is a ttiuforiii
lujpper bounid oin the olubleul arglilent.

It. mlay bc cluar. froml thev above oliscussiomi Ithat there is littIle inl the( derivat ions for-I ile squua,-re-

root and ihivisiomi p~rogramis that 1colend~s oil I ho' propei-ticos of these fumlict ious. Mone or. less thle santle
dbri vat iol sum flices to timid anl appio ximtnat e sohi it ion to anl arbitrlaty real-iibc imlotitat iou f( z) =r.

For t agiVcli comtipitald I'll1( lictol f, We coutsidhtt I hol siuecihical ioi

sol ito(r, o ) i hd z such t hat
f(z:) < r anid rtol [f (z ± ) < r]

Sth cn no t (f(U) <r

hlere a '%till 1) arc p-iuintinit iV couistuit. amid 11 i4 a variabIe. tit outhier words. wc assumtie hi l there
exist recal t111iutus a aimld 1) >ut t li~it f (a) < r mid f (a) > r for- tvety real a greater H ium It. The
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specification is illustrated as follows:

, € f(u)
6

ZOO r

!'

a z z +e b

Note that wC do Iot need to assIIIIe f is increasing or even contiious; if f is not contiiiotls,
an exact s'liition to the equation f(a) = r need not, exist, but only an approximate solution is
r'quire(d by the specification.

The program w, obtain is

"". .olve(r, ) .€= if a + c < b
then if f(solve(r, 2c) + () < r

then .olve(r, 2c) + c
else solve(r, 2c)

else a.
In the recursive case, in which a + ( < b, the program is so closely analogous to the previous

binary-sa*( hi programs as to reqiure no further ex)lanation. In the base case, in which b < a + C,
V. " the otput call safely be taken to bc a. For, by our input condition, we have

f(a) < r

and (again by our inpit condition, becauise b < a + c)

not [f(a + ) < r].

Thus, a satlishes both conjuncts of the output conlition in this case.

The above program may be regarded as a schelna, )becalls" we may Ilak(, the symbol f to
l), any )rimitive fuimctionl symbol. An even more general blmiary-search program schima can be

'p ierived fro mi tle specification

"~.mcnrch(r,,) z find z such that

p(r, z) ,,ld not p(r, z + )

whe- p(a) nd Iif b < - j
Ul ) then rot(,)

where 1) is a primitive relation symbol and a mnd b are primitiv co'<.t ants. We obtain the Mh'luua

scarch(r, ) €= if a + c < b
then if ,(r, scarch(r, 2() +

then ,qarc!,(r, 2() +,
c.w scarch(r, 2()

else a.

or %

-. ' -" -"--"C-.
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* INTEGER ALGORITHMS

The programsg we have discussed apply to the tioniiegative real imbiilers; iusig thle samle
approach, we have de~rivedl a1IlIogotis programls that ap~ply to the u niinegative ilitc('cC15. These
dleriat ons require a-general izat loll Step ill applyiung the Iiridi c honl iileo. We have avouded 1Presentiing
genieraliz~at (in amIl the contom itanit int rodhic tion of an xiliary prograiiis inl this paper, 1 imt we give

sonic resiilts oi thiesc dlerivationls here.

Integer square root

TFhe int eger spae- root pro gramn is iiitcicd( to findl tie( Int eger part of \/ .t thle real s~ir

root of a nonlnegative iteger ni. It uut, be specilieti ill the( theory of lolliliegative initegers as follows:

sqr-t (ri) ,t= flid z snch that
92 < ni a1 not[(Z + 1 )2 < n

Ill other wort(i, , thle program ii ist yield1 a nlon negative ilteger z that is withinl I less t halln .

Ill thle con r~e of the( derivat ion * we are led to iit rooltice aill auixiliary p~rogrami to miect the miore

eciral specihecat iou

,sqrt 2(n's, i) -- find z sitid that
z 2 

< 71 (till riot [(Z+ t,- i)2 < n]
where 0 < i.

lit o(hci words, wc wish to fiujol a ulomiilgat ivO lineger z that is witlhii I less than V1-t This anxiliary
spccilicatioii is prcciscly analogous to the rcalnininihiewr s(jtiar('-iiot spo'titicatioui, wilt i playing the
o 1e of the( error t olermice

The( pr gramls we ohiblii to miiet theise' spcill jati otis are

. qrt(n,) ,;qr12(n, 1)

then if [mqrt2(fl, 20) + I ] 2 <r

then ,pr12(n, 2i) +1

* Integer quotient

The iiitegei Tpintieiit piti;iii cani he ,p(clicd similarly:

qi(jiLt7, 71) 4- ind zStich that,

z 71 < lit (trill riot [(Z I I) ?I < tit]

where 0 < ni.

r. - - -
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- ~ ~ I tIlLth wordAs. weC wish to iild a nonn11egative ju grz that is within t less thaun rn/n, the real-
nmibcr (I~lotietit of mf and ni.

hi the course of the derivation, we are led to introduce an auxiliaty progiain to meet, tite more
genceral specification

quot3(rn, n, i) -- fid( z such that
z -n < rm and not[(z + 0) n < rn]

N where, I) < n1 and 0 < K

I other words. we wishi to find a nonnegative integer z that is within i less than rn/n.

The( programs )tajnetl to mzeet these specifications arc

who re

Nqzzodo(mr, n, i) 'z if Z' n <rm

then if [quot3(rrn, n, 2i) + ']n < 71

then quot3(mn7, 2i) + i
else quot,'(r, n, 2i)

rlse 0.

'I'l' l(,riv;u ion is again auualogouis.

DISCUSSION

Tit(, ihiivitim, were fiIirst iiisciivir('( mnally: ti( lie tlt-iiiiiii{ sqpuire-root dlerivationi was
iuli)(jiiiiiiiy rcf'itihIiil-c toy Nehlill ill wk iiitclr;i.I yev ji'itaiii-syiit liesis systemti. The onIly alitouijatic

itili'ttlli'iitt loll 44 It, svtii (Uno'ssel8) i ' tunabl to cinucittt I litO de(rivti on for at simpile reason:
'V ~~it niever 0t t ipjt s to ;ipjily t he reso)luit 11uile to a goal ando itself.

'mwi rl'siit. 5 if tii> Mititigat loulii (.i' itt l tii m(it 1lsuall t'Xjericet('. It is columutioti for a bit of
- ~~re;L<41111tig the ilili siiiiiih' and iiit 1ilt ively stihtiwadtot Illr (lit to bie (lilliciilt. to loriuuitalize
- ~ ~ ~ ~ iiii I iii i ddilo Id! still to i hi1ilicat, ;mwt otujat ni:tdy. I lic thle op~imsit ( is ri iii' ide iia that r~equiires
* ;i a 1'tanth ic l,nq of biiuiu1al iuugie it 11y to (liScoVli is ciajitrc mccliieliaii;tly illiia few easy fornmal
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SPECIAL RELATIONS IN AUTOMATED DEDUCTION

Zohar Manna Richard Waldinger
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ABSTRACT

Two deduction rules are introduced to give streamlined treatment to relations of special importance in an
automated theorem-proving system. These rules, the relation replacement and relation matching rules, gen-
eralize to an arbitrary binary relation the paramodulation and E-resolution rules, respectively, for equality,
and may operate within a nonclausal or clausal system. The new rules depend on an extension of the notion
of polarity to apply to subterms as well as to subsentences, with respect to a given binary relation. The rules
allow us to eliminate troublesome axioms, such as transitivity and monotonicity, from the system; proofs are
shorter and more comprehensible, and the search space is correspondingly deflated.

1. INTRODUCTION

In any theorem-proving system, the task of representing properties of objects is shared between axioms
and rules of inference. The axioms of the system are easier to introduce and modify, because they are
expressed in a logical language. However, because axioms are declarative rather than imperative, they are
given no individual heuristic controls. The rules of inference, on the other hand, cannot be altered without
reprogramming the system, and they are usually expressed in the system's programming language. However,
the rules can be given individual heuristic controls and strategies.

It is customary to use rules of inference to express properties of the logical connectives, which are the
same from one theory to the next, and to use axioms to express properties of constants, functions, and
relations, which may vary. It is hazardous, however, to express certain properties of functions and relations
by axioms. Some properties of the equality relation, for example, are rarely represented axiomatically. For
one thing, in a first-order system indefinitely many axioms are necessary to represent the substitutivity

. property of this relation, depending on how many function and relation symbols are in the vocabulary of
the theory.

For instance, for a binary function symbol f(x, y), we must introduce two functional-substitutivity ax-
ioms,

if X = y i =
[]f z, fyz) and if

then f(z,z) = f(y,z) then f(z,x) = f(z,y),

and for a binary predicate symbol p(x, y), we must introduce two predicate-substitutivity axioms,

f X =and if X = y
then if p(x,z) then p(y,z) then if p(z, x) then p(z, y).

An abbreviated version of this paper appears in the proceedings of the Twelfth International Colloquium
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2 1. INTRODUCTION

(We tacitly quantify variables universally over the entire sentence.) In general, for each n-ary function
symbol f(rj,.... x,,), we introduce n functional-sustitutivity axioms. Similarly, for each n-ary predicate
symbol p(z .... , x,,), we introduce n predicate-substitutivity axioms.

More importantly, axioms for equality are difficult to control strategically, because they have many
irrelevant consequences. An axiom such as transitivity,

tfx=ty and y=z
then z = z,

will allow us to derive logical consequences from any sentence mentioning the equality relation. Few of these j
consequences will have any bearing on the proof.

In response to this problem, some theorem-proving researchers have paraphrased their theories to avoid
explicit mention of the equality axiom (e.g., Kowalski [791). Others have adopted special inference rules for
dealing with equality. In resolution systems, two equality rules, paramodulation (Wos and Robinson [691)
and E-resolution (Morris [69]) have been found to be effective. Variations of these rules are used in many
theorem provers today (e.g., Boyer and Moore [79], Digricoli [831). By a single application of either of these
rules, we can derive conclusions that would require several steps if the properties of equality were represented
axiomatically. The proofs are markedly shorter, and the search spaces are even more dramatically compressed

K. -. because the axioms and intermediate steps are not required. Within their limited domain of application,
theorem-proving systems using these rules surpass most human beings in their capabilities.

SPECIAL RELATIONS

The authors became involved in theorem proving because of its application to program synthesis, the deriva-
tion of a program to meet a given specification. We have been pursuing a deductive approach to Lhis problem,
under which computer programming is regarded as a theorem-proving task. In the proofs required for pro-
gram synthesis, certain relations assume special importance. Again and again, proofs require us to reason
not only about the equality relation, but also about the less-than relation < (over the integers or reals),
the subset relation C, the sublist relation "<Ist, or the subtree relation _<tree. To represent the transitivity
and other properties of these relations axiomatically leads to many of the same problems that were faced
in dealing with equality: the axioms apply almost everywhere, spawning innumerable consequences that

NP swamp the system. Yet we would not want to implement a new inference rule for each of the relations we
find important.

Both the paramodulation and the E-resolution rules are based on the substitutivity property of equality,
.-r that if two elements are equal they may be used interchangeably; i.e., for any sentence P(x, y), the sentencef*"ii~i if z = !

then if y y) then P(y, x)

is valid. Here r' ., r) is the result of replacing in P(x, y) certain (perhaps none) of the occurrences of z %ith
!j, and certain (p, ;haps none) of the occurrences of y with z. (The notations we use here informally will be
dfined system.ti, -illy later on. We assume throughout that sentences are quantifier-free.)

We observe that many of the relations we regard as important exhibit substitutivity properties similar
to the pve ipperty of equality, but under restricted circumstances. For example, over the nonnegative
integers, we c.i; show that

:nif ic <x b
t h~ a <y b . . . . . . . . . .
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1. INTRODUCTION

and, over the lists, we can show that

if x 2,ISt Y

then if u CE x
then u c t/.

Knowing that x < y or that x <It y does not allow us to use z and y interchangeably, but it does allow us
to replace certain occurrences of x with y, and vice versa.

Based on such substitutivity properties, we can introduce two deduction rules that generalize the
paramodulation and F-resolution rules for equality to an arbitrary relation, under appropriate circumstances.
Just as the equality rules enable us to drop the transitivity and substitutivity axioms for equality, the new
relation rules enable us to drop the corresponding troublesome axioms for the relations of our theory.

POLARITY

For the equality relation, knowing that x = y allows us to replace in a given sentence any occurrence of
x with y and any occurrence of y with x, obtaining a sentence that follows from the given one. For an
arbitrary binary relation -4, knowing that x -4 y still may a' -w us to replace certain occurrences of z with y
and certain occurrences of y with z. We describe a syntactic procedure that, for a given relation -4, identifies
which occurrences of x and y in a given sentence can be replaced, provided we know that X -4 Y

More precisely, we identify particular occurrences of subexpressions of a given sentence as being positive
(--), negative (-), or both, or neither, with respect to -,. If x -i t, positive occurrences of x can be
replaced with y, and negative occurrences of y c:an be replaced with z. In other words, we can establish the
substitutivity property that, for any sentence P(x + , y-), the sentence

if z -4 y
then if P(z, y - ) then P(y+, z-)

is valid (over the theory in question). Here P(y+, x-) is the sentence obtained from P(x + , y- ) by replacing
certain positive occurrences of x with y and certain negative occurrences of y with x. With respect to the
equality relation, every subexpression is both positive and negative; therefore, if we take -4 to be =-, this
property reduces to the substitutivity of equality.

Our new rules are based on the above substitutivity propcicy just as the equality rules are based on the
substitutivity of equality. The new rules, like the equality rules, allow us to perform in a single application
inferences that would require many steps in a conventional system. Proofs are shorter and closer to an
intuitive argument; the search space is condensed accordingly.

NONCLAUSAL DEDUCTION

The paramodulation and E-resolution rules are formulated for sentences in clausal form (a disjunction of
atomic sentences and their negations); on the other hand, the two corresponding rules we introduce apply to
free-form sentences, with a flill set of logical connectives (cf. Manna and Waldinger 180', Murray [82j, Stickel
!82'). By adopting such a nonclau.;al system, we avoid the proliFeration of sentences and the disintegration
of intuition that accompany the translation to clausal form. Also, it is awkward to express the matheniatical
induction principle in a clausal system, because we must do induction on sentences that may require more
than one clause to express. On the other hand, our rules are also immediately and direc(tly appli alhl to

clausal theorem-proving systems.

S , . . . .A



4 2. PRELIMINARIES

OUTLINE

In the following section, Preliminaries, we sketch the basic concepts of logic that we use in this paper and
we briefly outline a nonclausal deduction system. Readers who are familiar with this material should skim
the section anyway, to become acquainted with our terminology and notations.

-b: In Relational Polarity we introduce our central notion, the polarity of a subexpression of a sentence
with respect to a given relation.

We then describe, in The Relation Replacement Rule, a new deduction rule that allows us to replace
* a subexpression of a sentence with another expression, under a wide variety of circumstances. This is our

generalization of the paramodulation rule.

The rules in our system can be applied when two subexpressions can be unified. However, our second
deduction rule, described in The Relation Matching Rule, allows us to draw a conclusion even though
two subexpressions fail to unify. (Typically this rule is applied when the two subexpressions "nearly" unify.)
This is our generalization of the F-resolution rule.

In Strengthening we tighten up our theory of polarity to allow the relation replacement rule to draw
a stronger conclusion, in many circumstances.

In Extensions, we indicate how the notions in this paper can be extended to apply to sentences
which contain explicit quantifiers and to define polarity with respect to functions as well as relations; we
develop more general, conditional versions of all the rules; and we show how our results apply to problems
in automated planning.

2. PRELIMINARIES

Before we can define our central notion, that of polarity of a subexpression with respect to a relation, we
must introduce some concepts and notations. We will be brief and informal, because we believe that this
material will be familiar to most readers.

EXPRESSIONS

We consider terms composed (in the usual way) of the following symbols:

* The constant symbols a, b, c, a1, . . ., s, t, and special constants such as 0.

* The variable symbols u, v, w, z, y, U . .

e The n-ary function symbols f, g, hf .. . and special symbols such as .

Thus a, z, f(a, x), and f(a, x) + 0 are terms.

We consider propositions composed (in the usual way) from terms and the following symbols:

' The truth symbols (logical constants) true and false.

- The n-ary relation symbols p, q, r, pl, .. and special symbols such as = and <.

Thus true and p(a, g(x)) are propositions.

We consider sentences composed (in the usual way) frora propositions and the following symbols:

" The logical connectives not, and, or, if-then, = (if-and-only-if), if-then-else.
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Thus (a < 0) or not(p(a, g(x))) is a sentence.

The operators consist of the function and the relation symbols. The expressions consist of the terms and
the sentences. Note that we do not include the quantifiers V and 3 in our language. The ground expressions
are those that contain no variables. The expressions that occur in a given expression are its subexpressions.
They are said to be proper if they are distinct from the entire expression.

REPLACEMENT

We introduce the operation of replacing subexpressions of a given expression with other expressions. We
actually have two distinct notions of replacement, depending on whether or not every occurrence of the
subexpression is to be replaced.

Suppose s, t, and e are expressions, where s and t are either both sentences or both terms. If we write
e as es,9 then e~tj denotes the expression obtained by replacing every occurrence of s in c[3] with t; we call
this a total replacement. If we write e as e(s), then e(t) denotes the expression obtained by replacing certain
(perhaps none) of the occurrences of s in e(s) with t; we call this a partial replacement.

When we say we replace certain (perhaps none) of the occurrences of s, we mean that we replace zero,
one, or more occurrences. We do not require that e[s] or e(s) actually contain any occurrences of s; if not, elt]
and e(t) are the same as elsj and e(s), respectively. Also, while the result of a total replacement is unique,
a partial replacement can produce any of several expressions.

For example, if e[sl is p(s, s, b), then elt] is p(t, t, b). On the other hand, if e(s) is p(s, s, b), then e(t) could
be any of p(s, sb), p(t, s, b), p(s, t, b), or p(t, t, b). If we want to be more specific about which occurrences
are replaced, we must do so in words.

A partial replacement is invertible, in the sense that any sentence e(s) can be retrieved by replacing
certain occurrences of t in e(t) with s. The occurrences of t to be replaced are precisely the ones introduced
in obtaining e(t) in the first place. For example, if e(s) is p(s, s, t), and e(t) is p(s, t, t), then e(s) can be
retrieved by replacing the newly introduced occurrence of t in e(t) with s.

Total replacement, on the other hand, is not invertible in the same sense. For example, if e[s] is p(s, s, t),
then e[tj is p(t, t, t), and ejsj cannot be obtained from e[t] by replacing every occurrence of t in e[t] with s.

MULTIPLE REPLACEMENT

We can extend the definition to allow the replacement of several subexpressions at once:

Suppose sl, ... ,s,, t, .. ., t,, and e are expressions, where the si are distinct and, for each i, s,
and t, are either both sentences or both terms. If we write e as e[1 , ... , s,j, then e[ti, . . . , t,] denotes
the expressio)n obtained by replacing simultaneously every occurrence of each expression si in e with the
corresponding expression t,; we call this a multiple total replacement. If we write e as e(s, R...,s,), then
e(t., ... , t, ) denotes any of the expressions obtained by replacing simultaneously certain (perhaps none) of
the occurrences of sonic of the expressions si in e with the corresponding expression t,; we call this a multiple
partial replacement.

The replacements are made simultaneously in a single stage. For example, if e[a, b} is f(a, 6), then er', c!
is f(b, c). On the other hand, if e(a, b) is f(a, b), then e(b, c) could denote any of f(a, b), f b, b), f(a, c)I or
f (b, c). Even though a is replaced by b and b is replaced by c, the newly introduced occurrences of 6 tre no t
replaced by c.

The rtplaveinnt s ar- male from t lie top down. For example, if e[p(a, b), a is p(a, b), then true', ' is
true. We replace ,ot i .( . and : but, a is a subexpression of p(a, b). In such cases, by convention, it iF the

----- :,-.



6 2. PRELIMINARIES

outermost subexpression that is replaced. (For the corresponding partial replacement, either subexpression
car be replaced.)

" By attaching a numerical superscript, we can specify exactly how many subexpression occurrences are
i to be replaced in a partial replacement. Suppose sj, . 5.. , s 1, t . t,, and ets 1 , s,) are expressions

- and k is a nonnegative integer, where the si are distinct and, for each i, si and tj are either both sentences
or both terms. Then eltl, • , t) k is the result of replacing in e(s, .I.. , s,,) precisely k occurrences of
s. , s....s with the corresponding expression tl, ... , t,,. [We assume that at least k occurrenes exist.]

Note that precisely k occurrences are replaced altogether. For example, suppose e(a, b) is c < f(a, a, b);
then e(a + 1, b + 1)2 could denote any of

c < f (a-+ 1,al 1,b), c < f(a+ 1,a,b+ 1), or c < f(a,a+ 1,b+ 1),

but not

c < f (a + 1,a + 1,b + 1) or c < f(a + 1,a,b).

We may also write e(ti, t 2 , • t.) k ', to indicate that precisely k or £ replacements are made in the expression

SUBSTITUTIONS

We have a special notation for a substitution, indicating the total replacement of variables with terms. A
theory of substitutions was developed by Robinson [651, in the paper in which the resolution principle was
introduced. A fuller exposition of this theory appears in Manna and Waldinger [811.

For any distinct variables zl, x2 , ... , z, and any terms t1 , t2 , ... , t,, a substitution

'-€....0 0 : (Xi -ti, X2 ,--t2, ... , , - tn}

is a set of replacement pairs zi - ti. Note that there are no substitutions of form {x - a, x -- b, . ..

where a and b are distinct. (If a and 6 are identical, then the set {x - a, x - a, ... } is the same as the set
{x - a, ... }.) The empty substitution { } is the set of no replacement pairs.

For any substitution 0 and expression e, we denote by e0 the expression obtained by applying 0 to e,
i.e., by simultaneously replacing every occurrence of the variable z, in e with the expression ti, for each
replacement pair z, - t, in 9. We also say that e9 is an instance of e. For example,

p (z, y) x - y, y -a} = p(y,a).

The enpty substitution { } has the property that e{ } = e for any expression e.

Two substitrtic,ns 9 and A are said to be equal if they have the same ,ffect on any expression, i.e., if,
fr any expreqsioi r,

A.* , F,,r oxainpl,.

*. . Tw',, i iuTtA ut i.ui and A are equal if they agree on all variables, i e., if I'" xA fOr all xaria <, x.

V-"r ii'y varithif 3, tiu11 t, and suistirlition the result

"WT ~~~~~~~~~....,. ". . ........ . . ....... .....-. . -.- , .... . ,., ,,. - . .- - -. .. .- " -- " .' "..".".,, " _" ,,,,,,



2. PRELIMINARIES 7

of adding the replacement pair x - t to 0 is defined to be the substitution that replaces z with t but agrees
with 6 on all other variables. It is thus defined by the properties

. z((X - t) o6 ) = t

y((x ,- t) o 0) = yO, for all variables y distinct from x.

Note that 0 may already replace x with some term t'; if so, that replacement is superseded by the new one.

For example,

(y,-b)o{} {y--b}

(x -a )o{y--,b} { {- a, y -,1

(y -c) o {x ~ a, y b} 1 {x a, y 4-c}

(X +- x) 0 {z -- a} = { }.

* We write (X ,- t) o (y - t') o 6 as an abbreviation for (x 4-- t) o ((y -- t') o 06).

The composition OA of two substitutions 6 and A is defined by the properties

{}A = A

. ((X - t)o9)A = (x .- tA) o (OA)

for all variables x and terms t. The most important property of the composition function is that applying
the composition of two substitutions 6 and A to an expression e is the same as applying first one and then
the other; that is, e(OA) = (e6)A. The empty substitution can be shown to be an identity under composition;
that is, { } = 0{ } = 6, for all substitutions 6. Also, composition can be shown to be associative; that is,
6(Ap) = (9A)p for all substitutions 6, A, and p.

The definition of composition suggests a way of computing it. For example,

{y - g(z)}{y - z, z - b} = (y - g(b)) o {y - x, z.--b}

= {ly - g(b), z .-

and therefore

{4-y, y 4- g(z)}{y X, z = (--x) o{y.-g(b), z +- b}

f y -- g(b), z - b}.

Note that the composition of substitutions is not commutative. For example, {x - )- =

{y -- x} and {y - x}{x -- y} = {x - y}, but {y -x} 5 {x -y.

A substitution 6 is said to be more general than a substitution 0' if there exists a substitution A such that
9A = 6'. For example, the substitution : {X - y} is more general than the substitution 0' : Ix - a, y -a),
because

0{y - al} = {.x -}{y -} = {x - a, y-- a) = 0'.

On the other hand, 6 {z - y} is not more general than the substitution (: {x - a}, because there is no
substitution A such that

eA = (x {.-a} = a

A substitution is regarded as more general than itself, because 0{ } = 0 for any substitution 0. It is
possible for two distinct substitutions to be more general than each other. For example, 6 : {z y} and

(': {y - } are more general than each other, because

f 0 x:
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and

O'{z+y Y1 {y X}{z-y) {X 6.
'p

UNIFIERS

A substitution 9 is said to be a unifier of two expressions e and i if

that is, if e9 and j0 are identical expressions. Two expressions are unifiable if they have a unifier.

For example, the substitution

0 9: {z-b, y--z}

=* is a unifier of the two expressions

e: f(x, z) and i: f(b,y),

because e9 i? = f(b, z). Thus, e and i are unifiable. The substitutions

.: {x-b,z-y}

and

p: {x--b, y--w, z--w}

are also unifiers of these two expressions. Thus, unifiers of expressions are not unique.

The expressions p(a) and p(b) are clearly not unifiable and neither are the expressions q(x, f(z)) and
q(g(y), y). The expressions x and f(z) are also not unifiable. Because x is a proper subexpression of f(x), we

know xO is a proper subexpression of (f(x)) 9, for any substitution 0; hence xO and (f(x)) 9 are not identical.

A substitution 0 is said to be a most-general unifier of two expressions e and i if 9 is a unifier of e and i
and if 0 is more general than any unifier of e and . For example, the distinct substitutions 9: {x - b, y - z}
and 0 : {x -- b, z +- y} are both most general unifiers of the expressions e : f(x, z) and i: f(b, y). Thus,

A most-general unifiers are not unique. It is clear, however, that all most-general unifiers of two expressions
are equally general, i.e., each is more general than any of the others.

There is a unification algorithm (Robinson 165]) for determining whether a given pair of expressions is
unifiable and, if so, for producing a most general unifier.

We can extend the notion of unifier to apply to a list of pairs of expressions. A substitution 0 is said to
be a simultaneous unifier of the list

((C h , (C ,l' ), .., (e, ,

of pairs of expressions if

,1 = ilO, e2 0 = '0, ... , and e, O = O.

(Note that we do not require that e1O = ej9, for distinct i and j.) We may also say that 9 is a
simultaneous unifier of el and j'j, of e2 and i2 ... , and of e, and '. A list of pairs of expressions is
simultaneously unifiable if it has a simultaneous unifier.

A list may fail to be simultaneously unifiable even though the expressions of each pair it contains are
unifiable independently. For example, the list of pairs

* =.-..

(( ,g ,)), Af ), ))

°6 %
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is not simultaneously unifiable, even though the expressions x and g(y) are unifiable, by the substitution
{X -- g(y)}, and the expressions f(z) and y are unifiable, by the substitution {y -- f(x)}.

For any list of pairs of expressions, a simultaneous unifier is most general if it is more general than any
other simultaneous unifier.

We can extend the notion of unifier further to apply to a list of lists of expressions. A substitution 6 is
said to be a simultaneous unifier of the list

" ~ ~ ~ ~ ~ ( 1) ,e , ... , (e2,1 ,20?, ... ,..,ee,... ,

of lists of expressions if

e1 e = e1 0 = 6e1 0 =

e2 0 = F6 = e .. =

eO = i O = e . .

We may also say that 6 is a simultaneous unifer of eI,i'j,, ... , of e2, 2, 2 .. , and of e,, ., e
The notion of most-general simultaneous unifier and the unification algorithm may be extended accordingly.
The notation is more complex but the concepts are the same.

SUBSTITUTION AND REPLACEMENT

We sometimes find it convenient to use the replacement and substitution notations together. Suppose s, t,
and e are expressions, where s and t are either both sentences or both terms. Let 6 be a substitution. If we
write e as e[s], then

e[t]

denotes the expression obtained by replacing every occurrence of so in e0 with t. If we write e as e(s), then

eo(t)

denotes the expression obtained by replacing certain (perhaps none) of the occurrences of sO in e0 with t.

For example, consider the expression

e: p(f(x, a)) or q(f(x, y)) or r(f(b, a))

and the substitution

6: {x -b, y- a}.

If we write e as e[f(z, a)1, then eO[g(c)] is

p(g(c)) or q(g(c)) or r(g(c)).

Note that two of the replaced occurrences of f(z, a)O in eO do not correspond to occurrences of f(x, a) in e;

they were created by application of the substitution 6.

INTERPRETATIONS

We shall use the Herbrand notion of interpretation, in which the elements of the domain are identified with
the terms of the language.

.. . . . . ., - , * " ."" - . . . , " . " .'-A



10 2. PRELIMINARIES

An interpretation I is an assignment of truth values, either T (true) or F (false), to every ground
proposition (i.e., to every proposition that contains no variables). If I assigns T [or F] to a ground proposition,
that proposition is said to be true [or false] under 2. The truth [or falseness] of a nonpropositional ground

• - sentence under an interpretation I may be determined from that of its propositional constituents by the
familiar semantic rules for the logical connectives.

A nonground sentence P is true under I if every ground instance of P is true under 1; otherwise, P is
false under I. Note that, according to this definition, free variables have a tacit universal quantification.

We can now define the notions of implication and equivalence between sentences. The sentences
. P1 , P2, P3 , ... imply a sentence Q if, for any interpretation 2,

if P1 , P2 , P2, •.. are all true under 2,
then Q is true under 2.

Note that if P implies Q, it is not necessarily the case that the sentence (if P then Q) is valid. For
example, p(x) implies p(a), because free variables are taken to be universally quantified. But the sentence
(if p(x) then p(a)) is not valid: its instance (if p(b) then p(a)) is false under any interpretation for which
p(b) is true and p(a) is false.

Two sentences P and Q are equivalent if, for any interpretation 2,

P is true under I

if and only if
.". Q is true under 2.

Hence P is equivalent to Q if P implies Q and Q implies P. For example, the sentences p(z) and p(y) are
- equivalent.

Lemma (instantiation)

For any sentence F and substitution 0, 7 implies jr0.

Both total and partial replacement exhibit the following value property:

Suppose P, Q, and 7 are ground sentences and 2' is an interpretation. Then

if P and Q have the same truth value under 2,
then [P] and 7[Q] have the same truth value under 2'.

Also,

if P and Q have the same truth value under 2,
e r "then jr(P) and jr(Q) have the same truth value under I.

- A A corresponding value property applies to multiple replacements.

Remark

e. -The value property applies only to ground sentences, not to sentences with variables. For instance, let
P be the sentence p(z), let Q be the sentence false, and let jP] be the sentence (not p(x)). Consider an
interpretation I under which

p(a) is true and p(b) is false.

Then (by the definition of truth for a nonground sentence) p(x) is false under I and hence

." p(x) and false have the same truth value under 2.

Il'.-,............... . . . . . .



2. PRELIMINARIES 11

On the other hand (by the definition again) not p(x) is also false under I and hence

(not p(x)) and (not false) do not have the same truth value under I,

contradicting the conclusion of the value property.

THEORIES

A theory is a set of sentences 7' that is closed under logical implication: If 7 implies a sentence P then P
belongs to T. A member of a theory 7 is also said to be valid in T.

A theory 7 is said to be defined by a set of sentences A if 7 is precisely the set of sentences implied by
A. We shall also say that A is a set of axioms for 7.

An interpretation " is said to be a model for a theory 7 if every sentence of 7 is true under 2.

For example, let 7 be the set of sentences implied by the transitivity axiom,

if x -< y and y -< z
then x -< z,

and the irreflezivity axiom,

not x -*< x.

Then 7 is a theory, defined by these axioms. The asymmetry property

if x-< y
then not y -< x

is a (valid) sentence of this theory.

RELATIONS

We need some special terminology for speaking about relations. Henceforth, let us consider a particular
theory. When we speak of validity, we shall mean validity in that theory.

Let p and q be n-ary relations. Then we say that p implies q if

if p(zix2, ... ,x,) then q(xj,X 2 , .. )

is valid (in the theory under discussion). We also say that p is equivalent to q if

-p(xI,x2, . .. ,x,) = q(xI,X2, .. .,xJ

is valid.

Let -4 be an arbitrary binary relation. We shall say that, over a given theory, -4 is reflexive if
b ~X X-4 x

is valid (in the theory); -4 is irreflezive if

not (z -4 z)

is valid; -4 is total if

z-4 y or x =y or y -4 x
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is valid; -4 is transitive if~if (x -.4 y and y -4 z) then x -4 z

is valid, and -* is symmetric if

if x-y then y-*x

is valid.

We regard logical connectives as relations on the set of truth values {T, F}. For instance, the implication
connective (if P then Q) is the relation that holds if P has value F or if P and Q both have value T; we may
read it as "P is falser than (or as false as) Q." The equivalence connective P = Q is simply the equality
relation on {T, F}. Note that, viewed as binary relations, the implication connective if-then is reflexive, total,
and transitive, and the equivalence connective = is reflexive, transitive, and symmetric.

ASSOCIATED RELATIONS

For each binary relation, we shall be concerned with certain associated relations.

Consider an arbitrary binary relation x -4 y (read as "x is related to y"). The reflexive closure - of -4
is defined by

" -4 y = (z-4y or z=y).

The irreflezive restriction -< of -4 is defined by

z Y =- (xz-4y and not (x y)).

The inverse . of -4 is defined by

.,..z x-y - x.

The negation 74 of -4 is defined by

z 4 y = not (x -4 y).

We use >- and >- to denote the inverses of - and -<, respectively, and 7 and 2 to denote their negations. If
_P we are using the prefix notation p(z, y) for a binary relation, we denote its reflexive closure by P(x, y), its

irreflexive restriction by p(x, y), and its negation by (z, y).

The following proposition connects the relations associated with a given binary relation:

:.. Proposition (negation of associated relations)

Consider an arbitrary binary relation -4.

The negation 2 of the reflexive closure of -4 is equivalent to the irreflexive restriction of its negation
-4, that is,

x 2 Y if and only if (z4 and not (z =y)).

The negation 74 of the irreflexive restriction of -4 is equivalent to the reflexive closure of its negation
i ,that 'is,

,4 x th y if and only if (x 74 y or x y). .

r W4-,. - " " . W " ' ' . .
° -

. % . % " " . l '' , " , . " - • ", " ' * ' ' ' " . '$ 2 ' " . " - .- . . e .
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3. RELATIONAL POLARITY

" We are now ready to define our key notion, the polarity of a subexpression with respect to a given binary
relation. We actually define the polarity of a subexpression with respect to two binary relations, -l and

-42. This notion is to be defined so that, if the subexpression is positive, replacing that subexpression with a
larger expression (with respect to -41) will make the entire expression larger (with respect to -42). Similarly,
if the subexpression is negative, replacing that subexpression with a smaller expression (with respect to -i

*. will make the entire expression larger (with respect to -42).

We begin by defining polarity for the arguments of an operator (i.e., function or relation).

Definition (polarity of an operator)

Let f be an n-ary operator and -41 and -42 be binary relations. Then

" f is positive over its ith argument with respect to -41 and -42 if the sentence

if X-41 y
then f(zi, ...z,_i1,X,z,+),...,zn)-42 fz ( ,_ZyZ+I, .. )

is valid. In other words, replacing x with a larger element y makes

f (Z, ... -,_I, X, z, +, I, Zn)

larger.

* f is negative over its ith argument with respect to -41 and -42 if the sentence

if x - y
then f(zj, ...,z,_j,Y,z,+1,...,Zn) - f (z ,...,z ,Zi+ 11 .z,)

is valid. In other words, replacing y with a smaller element x makes

f (zi .... , Z-l, Y, Z,+l, ..., izn)

larger.

We illustrate this notion with two examples.

Example

Suppose our theory includes the finite sets and the nonnegative integers. Take f(z) to be the cardinality
function card(z), which maps each set into the number of elements it contains. Take -41 to be the subset
relation C over the finite sets and -2 to be the weak less-than relation < over the nonnegative integers.

Then the card function is positive over its first (and only) argument with respect to the relations C and
<, because the sentence

if zX _ y
then card(z) < card(y)

. is valid (in the theory). J

Example

% Consider the theory of the integers. Take f(zi, z2) to be the less-than relation zi < z2.Take x -41 y to
be the predecessor relation z y<, y, which holds if z = y - 1, and take -<2 to be the if-then connective.
(Recall that we regard connectives as relations on the set of truth values.)

A I_
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Then the less-than relation < is negative over its first argument with respect to "<,red and if-then,
because the sentence

if z -<pred Y
then if y < z2 then X < Z2

is valid. Also, < is positive over its second argumet with respect to -<pred and if-then, because the sentence

if X -<pred Y
then if z, < x then z1 < y

is valid.

It follows from the definition that, for any n-ary operator f and binary relations -41 and -42,

f is positive over its ith argument with respect to -41 and -E2
if and only if

f is negative over its ith argument with respect to *-j and -42
if and only if

f is negative over its ith argument with respect to -41 and 1-2
if and only if

f is positive over its ith argument with respect to *- and *-2.

When we say that a relation p(zj, ... , z,,) is positive or negative over its ith argument with respect
to a single relation -1, without mentioning a second relation -2, we shall by convention take -42 to be the
if-then connective. Thus in the above example we may simply say that < is negative over its first argument
and positive over its second argument, with respect to -<pred.

- . Every relation is both positive and negative over each of its arguments with respect to the equality
relation =, because the sentences

if X = y if z = y
then if p(zj,...,x,...,Zn) and then if p(z, ...,y,...,zn)

then pzi,...,Y,...,Zn) then p(zI...,z,...,Zn)

are valid. This is equivalent to the relational-substitutivity property of equality. Also, every function is both
positive and negative over each of its arguments with respect to = and =, because the sentences

, if r=y and if x=y
then f(zi,..., , z ) = f(ZI,...,Y,..., z ) then f(zi,...,Y,. Zn) = f zx,...,x,...,z,)

are valid. This is equivalent to the functional-substitutivity property of equality.

Every connective is both positive and negative over all its arguments with respect to -. For example,
the not connective is both positive and negative over its argument with respect to =, because both sentences

tf X y if X y
then if (not z) then (not y) then if (not y) then (not x)

•'. are valid.

When we say that a connective is positive or negative over its tth argument, without mentioning any

- relations -t and -42 at all, we shall by convention take both -1 and -2 to be the if-then connective. Polarity
in this sense is close to its ordinary use in logic. The negation connective not is negative in its first (and
only) argument, because the sentence

if if z then y
then if (not y) then (not x)
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is valid. The conjunction connective and and the disjunction connective or are positive over both their
arguments. The implication connective if-then is negative in its first argument, but positive in its second.
The equivalence connective = has no polarity in either argument. The conditional connective if-then-else
has no polarity in its first argument, but is positive in its second and third argument.

Note that a binary relation -4 is transitive if and only if it is negative with respect to -4 itself over its
first argument, because the polarity condition

if z -4 y
then if y -4 z then x -4 z

is equivalent to the definition of transitivity. Also, -4 is transitive if and only if it is positive with respect to
-4 over its second argument.

We are now ready to define polarity for the subexpressions of a given expression. The definition is
inductive.

Definition (polarity of a subexpression)

Let -41 and -42 be binary relations. Then

* An expression s is positive in s itself with respect to -1 and -<2 if -41 implies -42.

* An expression s is negative in s itself with respect to -41 and -42 if -41 implies *'2.

Let f be an n-ary operator and ei, e2, , e, be expressions. Consider an occurrence of s in one
of the expressions ei. Then

" The occurrence of . is positive in f(es, e2 , ... ,en) with respect to -41 and -42 if there
exists a binary relation -4 such that

the polarity of the occurrence of s in e1 with respect to -41 and -4
is the same as

the polarity of f over its ith argument with respect to -4 and -42.

" The occurrence of s is negative in f(el, e2 , ... ,,n) with respect to -<1 and -42 if there
exists a binary relation -4 such that

the polarity of the occurrence of s in ei with respect to -41 and -

is opposite to
the polarity of f over its ith argument with respect to -4 and -42-

Furthermore, if f has no polarity over its ith argument or if s has no polarity in e1 , then s has
no polarity in f(el, e2, ... en). On the other hand, if s has both polarities in ei and f has some
polarity over its i argument, or if f has both polarities over its ith argument and s has some polarity
in e,, then s automatically has both polarities in f(ei, e2 .... , en). J

Remark

For any binary relation -4, any expression s is positive in s itself with respect to -4 and -4 (because -4
implies -4). Similarly, s is negative in s with respect to -4 and *--.

If f is positive over its ith argument with respect to -41 and -42, then, for any expressions ei, e 2 , .. . ,
the occurrence of e, is positive in f(et, . . . , ej, . . . , en) with respect to -41 and -42. For take -4 to be -41. Then
the polarity of e, in e, itself is positive with respect to -41 and -41. Also, f is positive over its ith argument
with respect to -41 and -42. Because these two polarities are the same, e, is positive in f(es, ... ,.,,.....e,)
with respect to -41 and -42.

,I

-"
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Similarly, if f is negative over its ith argument, then e, is negative in f(el, ei, ... , en), with respect
to -41 and - . J

We may indicate the polarity of a subexpression s by annotating it s+ , s-, or s +.

For example, suppose our theory includes the theories of sets and nonnegative integers. The occurrence
of a in the sentence

card(s-) < rn

is negative with respect to the subset relation C and the if-then connective. For note that card is positive
over its argument with respect to C and < and that < is negative over its first argument with respect to <
and if-then. Therefore, by our remark, we know that s is positive in card(s) with respect to C and < and
that card(s) is negative in card(s) < m with respect to < and if-then. By the definition, taking -1 to be
C, -4 to be <, and -4 to be if-then, we conclude that s is negative in card(s) < m with respect to C and
if-then.

When we say that an occurrence of a subexpression is positive or negative in a sentence with respect
to a single relation -41, without mentioning a second relation -42, we shall again take -2 to be the if-then
connective. When we say that an occurrence of a subsentence is positive or negative in a sentence, without
mentioning an:' relation at all, we shall again take both -41 and "42 to be if-then.

It can be established from the definition that, for expressions s and t and binary relations -41 and -42,

an occurrence of s is positive in t with respect to -4< and -2

if and only if
the occurrence of s is negative in t with respect to *-I and - 2

• if and only if
the occurrence of s is negative in t with respect to -41 and )-2

if and only if
the occurrence of s is positive in t with respect to '- and -.

This is analogous to our previous result concerning polarity for the argument of an operator.

Suppose an occurrence of s is positive [or negative] in t with respect to -41 and -42. Then if -; is a
binary relation that implies -41, then s is positive [or negative, respectively] in t with respect to - and -42.

" Similarly, if -4 implies a binary relation 42, then s is positive [or negative, respectively] in t with respect
to -4 and -;2.

We can establish the following result:

Lemma (polarity operator)

Let -41 and -#2 be binary relations, f be an n-ary operator, and ei, e2 , ... , be expressions. Con-
sider an occurrnm-e of s in one of the expressions e, such that s has some polarity in f(ei, e2 , • . • , e,n)
with respect to -41 and -42.

Then ther' e<i:t ; a binary relation -4 such that

f is psitiv,. ,ver its ith argument with respect to -. and -2

and

the pijarity t thp rhccurrOnre of q in f (e, ., with respect to -4t and -42

is the siin' ,aj

HIP p-jawi .,f the' ocurrence of .9 in P, with respect to - and -4.

4.2

i-..' %'.%VV -
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Proof

Consider the case in which the occurrence of s is positive in f(e1, e2 , ... , el) with respect to -1 and
-42. According to the definition, this means that there exists a binary relation -; such that

the polarity of the occurrence of s in e1 with respect to -41 and
is the same as

the polarity of f over its ith argument with respect to -; and -42.

If f is positive over its ith argument with respect to ; and -42, then the occurrence of s is positive in
e, with respect to -41 and ;, and we can simply take -4 to be ft

On the other hand, if f is negative over its ith argument with respect to -; and -. 2, then the occurrence
of q is negative in ei with respect to -41 and -;. By previous remarks, this means that f is positive over its
ith argument with respect to the inverse relation - and -42, and the occurrence of s is positive in ej with
respect to -1 and the inverse relation ;-. Hence we can take -4 to be -.

The case in which s is negative in f(el, e2 , • ., e,) is treated similarly.

Polarities of subexpressions of subexpressions can be composed according to the following result.

Lemma (polarity composition)

Consider an occurrence of a subexpression r in an expression s and an occurrence of s in an
expression t. Then the polarity of the occurrence of r is positive [or negative in t with respect to
binary relations -1 and -2 if and only if there exists a binary relation -4 such that

the polarity of the occurrence of r in s with respect to -41 and -4
is the same as [or opposite to, respectively]

the polarity of the occurrence of s in t with respect to -4 and -2.

For instance, if r is negative in s and s is negative in t then r is positive in t, with respect to the
appropriate binary relations. If r has both polarities in s and s has some polarity in t, then r has both
polarities in t.

We can now establish the fundamental property of polarity.

Lemma (polarity replacement)

For any binary relations -1 and -42 and expression e(x+, y-), the sentence

if X- 1 y
then celx, Y-) -42 e(y + , X-)'

is valid. Here e(y + , x-)' is the result of replacing in e(x+, y-) precisely one positive occurrence
of z with y or negative occurrence of y with x (we assume that such an occurrence exists) where
the polarity is taken in e(x + , y-) with respect to -41 and -42.

Example

Suppose our theory includes the theories of lists and nonnegative integers. Take -1 to be the tail
relation X , y, which is true if

not (y~-I and x tail(y),

,1#

.........................................................................
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that is, if y is nonempty and z is the list of all but the first element of y. Take -42 to be the predecessor
relation "-vred. Take e(x+, y-) to be the expression

length(xz) + length(z+),

where the function length(x) yields the number of elements in the list z.

Note that each occurrence of x is positive in length(x) + length(x) with respect to -<fir and "<pred, as
indicated by the annotations. For, each occurrence is positive in length(x) with respect to "<tail and -<pred,
and the plus function + is positive over either of its arguments with respect to "<pred and -<pred.

Therefore, according to the lemma, the sentence

If Z <ta.i y
then length(x) + length(x) -<pr, length(y) + length(z)

is valid, because length(y) + length(z) is the result of replacing one positive occurrence of x in length(x) +
length(x) with y. Also, according to the lemma, the sentence

if Z"tailY

then length(x) + length(x) <prd length(x) + length(y)

is valid, because length(x) + length(y) is the result of replacing one positive occurrence of z in length(x) +
iength(z) with y.

On the other hand, the lemma does not allow us to conclude that

if X "<tail Y

then length(z) + length(z) -<,,,d length(y) + lengthfy)

is valid, because length(y) + length(y) is obtained by replacing two, not one, positive occurrences of x in
length(z) + length(z) with y. In fact, this third sentence is not valid.

We now prove the lemma.

Proof (polarity replacement lemma)

For any arbitrary binary relation -1, suppose that

We show that, for any expression e(x+, y-), we have, for any binary relation -42,

--',"-e~x+, Y-) --4 e(y+, X-).

* . The proof is by induction on the structure of e(x+, y-). In other words, we show the desired conclusion
for an arbitrary expression e(x+, y-), under the induction hypothesis that, for any proper subexpression

( x+, y-) of e(x + , y-), we have, for any binary relation ;2,

,: E' 7- Z(X+, Y-) -;2 Z('( , X-) .

As in the statement of the lemma, 2'(y+, x-) 1 is obtained from Z(z+, y-) by replacing precisely one occurrence
of z or y, of suitable polarity with respect to --4 and ;2.

The proof distinguishes among several subcases.

Case: The expression e(z+, y-) is simply z

Then, because the replaced variable z is positive in x, with respect to -1 and -42, we have (by the

definition of polarity) that -1 implies -2.

- . ".. . .
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In this case, e(y+, x-)' is y, and we must show

X -2 Y.

But this follows from our supposition that z "-1 y, because -1 implies -42.

Case: The expression e(x + , y-) is simply y

Then, because the replaced variable y is negative in y with respect to -41 and "(2, we have (by the
definition of polarity) that -1 implies *--2.

In this case, e(y+, x-) is x, and we must show that

Y -2 X,

or, equivalently, that

4'.

But this follows from our supposition that x -41 y, because -41 implies *-2.

.! Case: e(x+, y-) is of form f(el, e2 , ... e,.), where f is an n-ary operator

The replaced occurrence of x [or yj must occur in one of the arguments e, of f. Because this occurrence
,*.' is positive [or negative, respectively] in f(el, e2 , ... , en) with respect to -41 and -42, we know (by the polarity

operator lemma) that there exists a binary relation -4 such that

f is positive over its ith argument with resect to -4 and -. 2

and

the polarity of the replaced occurrence of z [or y] in e1 with respect to -4 1 and -4
is the same as

the polarity of the replaced occurrence of x [or yj in f(ei, e2, ... , e0 ), that is,
e(z+, y-), with respect to -1 and "42.

Let us therefore write e, a, ei(x+, y-).

Because e1(z+, y-) is a proper subexpression of e(x+, y-), we can apply our induction hypothesis,
taking Z'(x + , y-) to be ei(z + , y-) and ;2 to be -4, to conclude that

+,W y--) -4 eiy+,

Therefore (by the definition of polarity of an operator, because f is positive over its ith argument with
respect to -" and -42), we have

,-,~-4 f-> ,) (el,..,,(y+, x- ,...,e,
fll,,(ejx'  Y " n) en),

that is,

e(, -42 ely +, x- 1

as we wanted to show. This completes the proof.

The polarity replacement lemma allows us to replace precisely one occurrence of a variable. If we know
more about the relation -42, we can establish stronger versions of the lemma. In particular, if we know that
-2 is transitive, we can replace one or more occurrences of the variable.

Lemma (transitive polarity replacement)

7r .r!
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For any binary relations -o and - and expression e(z + , y-), where -42 is transitive, the sentence

if z -4 y
then e(x - y-) -2 e(Y-, x-)n

is valid for every positive integer n. Here e(y + , x- )T is the result of replacing in e(x+, y-) precisely
n positive occurrences of x with y or negative occurrences of y with x, where the polarity is taken
in e (x+, y-) with respect to -4 and -4

Note that we can replace occurrences of both x and y in the same expression; precisely n replacements
are made altogether. Also, the lemma requires that at least one replacement be made.

Example

Suppose our theory includes the theories of both lists and integers. Take e(xz, y-) to be the expression

e(zx, y-): length(x + ) + (length(x + ) - length(y-)).

Take -4 to be the tail relation -<ta (defined in a previous example) and -42 to be the less-than relation
<. Note that, with respect to -<teai and <, both occurrences of x are positive and the occurrence of y is
negative in e(x+, y-); also < is transitive. According to the lemma, the following sentences (among others)
are valid: the sentence

* - if X '<tail Y
then length(x) + (length(x) - length(y)) < length(y) + (length(y) - length(y)).

for which both occurrences of x in e(x+, y-) have been replaced, and

if X -<tanl y
then length(x) + (length(x) - length(y)) < length(x) + (length(y) - length(x)),

for which one occurrence of x and one of y in e(z+, y-) have been replaced.

On the other hand, the lemma does not allow us to conclude that

if X -<tadl Y
then length(x) + (length(x) - length(y)) < length(x) + (length(x) - length(y)),

is valid, because no replacements of x or of y in e(x + , y-) have been replaced. In fact, this final sentence is
clearly not valid. j

We now prove the lemma

Proof (transitive polarity replacement lemma)

We assume throughout that polarity is with respect to " and -2. We suppose that

and show that

" P ~~ .7U - ' .

for every positive integer n. The proof is by induction on n.

Base Case: ?I 1.

In this case, precisely one replacement is made. The desired result

"'" '"elz ,y )-2 e y , X-)

"- follows from the original polarity replacement lemma.

. -.-
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Inductive Step:

For an arbitrary positive integer k, we assume inductively that

e(X+, y) .42 e(y+, x-)k

and show that

e(z+, y - ) -2 e(y+ , z)k+X .

Observe that e(y+, z-)k + ' can be obtained from e(y+, X-)k by replacing precisely one positive occur-
rence of x with y or one negative occurrence of y with x. Therefore, by the original polarity replacement
lemma, we have

e(y+, X-)k -42 e(y+, -)k+I.

Because our induction hypothesis is that e(x+, y-) -42 e(Y+, X-)k, and because we have assumed that

. is transitive, we can conclude that

e(z+, -) -2 e(y+, X-)k+1,

as we wanted to show.

If -2 is transitive, the above lemma allows us to replace one or more occurrences of a variable. If -42 is
both reflexive and transitive, the following lemma allows us to replace zero, one, or more occurrences.

Lemma (reflexive transitive polarity replacement)

For any binary relations -1 and -42 and expression e(z+, y-), where -2 is both reflexive and transitive,

the sentence

if z y

then e(z+, y-) -2 e(Y+, X-)

is valid. Here e(y+, z-) is the result of replacing in e(x+, y-) certain positive occurrences of x with y and

certain negative occurrences of y with z, where polarity is taken in e(x+, y-) with respect to -41 and -o2.

This lemma, as opposed to the transitive polarity replacement lemma, admits the possibility of replacing no
occurrences at all of x or y in e(z+, y-).

Example

Suppose our theory includes the theories of both finite sets and integers. Take e(x+, y- to be the
expression

eIx+, y-) card(x- -I y) - card(y- - x+)

where z - y i.: the difterteuce between the sets z and y, that is, the set of elements of z that do not belong to

y. Take -1 to be the sub.et relation C and -42 to be the weak less-than relation <. Note that, with respect

to C and -, both occurrences of T are positive and both occurrences of y are negative in e(x+, y-), as the

annotations indicate. Also, < is b)oth transitive and reflexive.

Therefore, accordlirng to the leniia, the following sentences are valid: the sentence

"f I

then card(°- card(y x) < card(y Y) rard(z -y

*,* - ..f 7 -. ... ... . .... */-~4 : *;
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for which all occurrences of x and y in e(x+ , y-) have been replaced, and tile sentence

if xCy
then card(x - y) - card(y - x) _ card(x - y) - card(y - x),

for which no occurrences of x and y in e(x + , y-) have been replaced. Of course, other valid sentences can
be obtained by replacing some, but not all, of the occurrences of x and y in e(x+, y-).

The proof is straightforward.
Proof (reflexive transiive polarity-replacement lemma)

In the case in which no replacements are made, e(y+, x-) is identical to e(x+, y-), and the desired
result holds because w have supposed that -2 is reflexive. In the case in which one or more replacements are
made, the desired result follows from the transitive polarity replacement lemma, because we have supposed
that -42 is also transitive.

The following consequence of the polarity replacement lemma will be used most frequently:

Proposition (polarity replacement)

For any binary relation -4 and sentence P(x+, y-), the sentence

if x -4 y
then if P(x + , y-)

then P(y+, x-)

is valid. Here P(y+, x-) is the result of replacing in P(x+, y-) certain positive occurrences of x
with y and certain negative occurrences of y with x, where polarity is taken in P(x+, y-) with
respect to -4.

Recall that, when we refer to polarity in a sentence with respect to a single relation -4, we mean polarity
with respect to -* and the if-then connective. The proposition allows us to replace occurrences of both x

-' and y in the same sentence and (trivially) admits the possibility that no replacements are made.

The proof is immediate.

Proof

Regarded as a relation, the if-then connective is reflexive and transitive. The replaced occurrences of
x and y are respectively positive and negative in P(x + , y-) with respect to -4 and if-then. Therefore the
proposition is simply an instance of the reflexive transitive polarity replacement lemma, taking -41 to be -4,
-42 to be if-then, and e(x + , y-) to be P(x', y-).

Example

Suppose our theory includes the theories of finite sets and integers. Take P(x+, y-) to be the sentence

P(x+, y-): a < card(x+ - y- ) and card(y- -x+) < b.

Take -4 to be the subset relation C. Note that, with respect to C, both occurrences of x are positive and
both occurrences of y are negative in P(x + , y-), as indicated by the annotations. Therefore, according to
the proposition, the following sentences are valid: the sentence

if x C y
then if a < rard(x -- y) and card(y - x) __ b

then a < card(x - z) and card(y - y) b,

: , 2%
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for which one occurrence of x and one occurrence of y in P(x+, y- has been replaced, the sentence

if X C_ Y
then if a < card(xz- y) and card(y - x) !_ b

then a < card(y - y) and card(y - y) < b,

for which both occurrences of x in P (x+, y-) have been replaced, and the sentence

if x C_ y
then if a < card(x - y) and card(y - x) < b

then a < card(y - x) and card(x - y) < b,

for which both occurrences of x and both occurrences of y in P(z+, y-) have been replaced. j

We have now developed the mathematical results on relational polarity we need in order to introduce
the special-relations rules. But first, we introduce briskly our basic nonclausal deduction system.

4. NONCLAUSAL DEDUCTION

In this section we present a basic nonclausal deduction system, without any special-relations rules. This
system bears some resemblance to those of Murray [82] and Stickel [82]; it is based on the system of Manna
and Waldinger [80], but is simplified in several respects:

* The system presented here is a refutation system; it attempts to show that a given set of sentences
is unsatisfiable. (The original system operates on a tableau of assertions and goals, and attempts
to show that at least one of the goals follows from the assertions.)

" The system is presented with no program synthesis capabilities.

" The mathematical induction principle is omitted.

These simplifications have been made for purely expository purposes: the special-relations rules are
compatible with a tableau theorem prover and with the induction principle and are of great use in program
synthesis, our primary application.

THE DEDUCED SET

The deduction system we describe operates on a set, called the deduced set, of sentences in quantifier-
free first-order logic. We attempt to show that a given deduced set is unsatisfiable, i.e., that there is no
interpretation under which all the sentences are true.

Theorem proving in a first-order axiomatic theory can be reduced to showing the unsatisfiability of such
a set. In particular, to show that a sentence 7 is valid in a theory whose axioms are A1,, A2 , .. k. ,, we
can

SRemove the quantifiers of the sentences A1 , A2 , ... , Ak, and not 7, by skolemization (see,
for example, Chang and Lee [73j, Loveland [78], or Robinson [79]).

* Show the unsatisfiability of the resulting set of quantifier-free sentences.

We do not require that the sentences be in clausal form; indeed, they can use the full set of connectives of
propositional logic, including equivalence (-) and the conditional (if-then-else).

4V
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Example

Consider the theory of the strict partial ordering -<, defined by the transitivity axiom

(VzI(V,(Vz~l j[f -< y and y -< z
Lthen x -< z

and the irreflezivity axiom

(Vx) [not (x -< x)].

Suppose we would like to show that in this theory the asymmetry property
(VU) [V)if ] <

(Vu)(Vu) [then not v-<u]

is valid. It suffices to show that the set of quantifier-free sentences

if x -< y and y -< z not (X -< x) not if a o-< b
then x -< z [

is unsatisfiable.

If the truth symbol false belongs to the deduced set, the set is automatically unsatisfiable, because the
sentence false is not true under any interpretation.

U, Because the variables of the sentences in the deduced set are tacitly quantified universally, we can
systematically rename them without changing the unsatisfiability of the set; that is, the set is unsatisfiable
before the renaming if and only if it is unsatisfiable afterwards. Of course, we must replace every occurrence
of a variable in the sentence with the new variable, and we must be careful not to replace distinct variables
in the sentence with the same variable. The variables of the sentences in the deduced set may therefore be
standardized apart; in other words, we may rename the variables of the sentences so that no two of them
have variables in common.

For any sentence 7 in the deduced set and any substitution 0, we may add to the set the instance 76
of jr, without changing the unsatisfiability of the set. In particular, if the deduced set is unsatisfiable after
the addition of the new sentence, it was also unsatisfiable before. Note that in adding the new sentence O,

we do not remove the original sentence 7.

THE DEDUCTIVE PROCESS

In the deductive system we apply deduction rules, which add new sentences to the deduced set without
changing its unsatisfiability. Deduction rules are expressed as follows:

jr, 2, ... ,Fm

This means that, if the given sentences Fl, Y2, jrm belong to the deduced set, the conclusion 7 may
be added. Such a rule is said to be sound if the given sentences 71, .72, . . ., - imply the sentence 7. If a
deductive rule is sound, its application will preserve the unsatisfiability of the deduced set.

The deductive process terminates successfully if we introduce the truth symbol false into the deduced
set. Because deduction rules preseive unsatisfiability, and because a set of sentences containing false is
automatically unsatisfiable, this will imply that the original deduced set was also unsatisfiable.

We include two classes of deduction rules in the basic system:

' =,.,,, ,,.,, .,.. ...... . .. .. .... ........... ............ ,.....,".=# ...... ,"...............'.......,...,.
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" The transformation rules, which replace subsentences with equivalent sentences.

" The resolution rule, which performs a case analysis on the truth of matching subsentences.

These rules are described in this section. In later sections, we augment the basic system with two new classes
of rules:

" The replacement rules, which replace subexpressions with other expressions (not necessar-
ily equivalent or equal).

* The matching rules, which introduce new conditions to be proved that enable subexpres-
sions to be matched.

We first describe the transformation rules.

TRANSFORMATION RULES

The transformation rules replace subsentences of the sentences of our deduced set with propositionally
equivalent, simpler sentences. For instance, the transformation rule

P and true -- P

replaces a subsentence of form (P and true) with the corresponding sentence of form P. The simplified
sentence is then added to the deduced set. (Logically speaking, the original sentence remains in the deduced
set too, but, for efficiency of implementation, the original sentence need not be retained.)

We include a full set of such true-false transformation rules; e.g.,

not true -- false

P or true -- true

if P then false - not P.

These rules can eliminate from a sentence any occurrence of the truth symbols true and false as a proper
subsentence.

We also include such propositional simplification rules as

P and P - P

not notP -. P.

These rules are not logically necessary, but are included for cosmetic purposes.

The soundness of the transformation rules is evident, because each produces a sentence equivalent to
the one to which it is applied.

p Example

Suppose our deduced set contains the sentence

if q(a) then false
7: or

(not true) or (not q(a)).

(We omit parentheses when the structure of the sentence can be indicated by indenting.) This can be
transformed, by application of the rule

if P then false-- not P,

.. .- ,- .- . ..-,. . .. . ,,e . . .. . , . . . , . , , ' ', ,. " " . . ' . . ' " " . " . . . " -" . " - " .'



26 4. NONCLAUSAL DEDUCTION

into the sentence

not q(a)
or

(not true) or (not q(a)),

which may then be added to the deduced set.

The new sentence can be transformed in turn, by successive application of the rules

not true - false

false or P -. P,

P or P -P,

into the sentence

not q(a).

We shall say that the original sentence I reduces to (not q(a)) under transformation.

Our original system (Manna and Waldinger [80]) included many more transformation rules; also, their
operation was more complex. In this system, the role of these more complex rules has been assumed by the
replacement rule of Section 5.

RESOLUTION RULE: GROUND VERSION

The resolution rule applies to two sentences of our set, and performs a case analysis on the truth of a

common subsentence. Instances of the sentences can be formed, if necessary, to create a common subsentence;
however, we first present the .Iround version of the rule, which does not form instances of these sentences.

Rule (resolution, ground version)

For any ground senter-es P, 7[P], and g[P], we have

9,P]

Jr[false] or 9[truel

In other words, if r[Pj and gJiPI are sentences in our deduced set with a common subsentence P, we can
add to the set the sentence (Jr1false] or *9true]) obtained by replacing every occurrence of P in jrlPJ with
fal.ie, replacing every occurrence of P in 9[P[ with true, and taking the disjunction of the results. We shall

assume that .71PI and 9[P] have at least one occurrence each of the subsentence P. We do not require that

-"Pj and gIPI be distinct sentences.

Because the resolution rule introduces new occurrences of the truth symbols true and false, it is always
possible to simplify the resulting sentence immediately afterwards by application of the appropriate true-false

.¢,, .rules. These subsequent transformations will sometimes be regarded as part of the resolution rule itself.
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Example

Suppose our deduced set contains the sentences

7"": if q(a) then p(a, b)

and

(not or (not q(a)).

These sentences have a common subsentence p(a, b), indicated by the surrounding boxes. By application of
the resolution rule, we may replace every occurrence of p(a, b) in j with false, replace every occurrence of
p(a, b) in g with true, and take the disjunction of the result, obtaining the sentence

if q(a) then false
or

(not true) or (not q(a)),

which (as we have seen in a previous example) reduces under transformation to

not q(a).

This sentence may be added to the deduced set.

Let us show that the resolution rule is sound, and hence that it preserves the unsatisfiability of the
deduced set.

Justification (resolution rule, ground version)

We must show that the given sentences F[P] and 9[P] imply the newly deduced sentence (jfalse] or

9[truel). Suppose that F[P] and g[P] are true; we would like to show that then (j[false] or 9[true]) is true.
We show that one of the two disjuncts, Y[false or .9[true], is true.

In the case in which the common subsentence P is false, we know (by the value property, because P
and false have the same truth value and F[P] is true) that the first of the disjuncts, F[false], is true.

"I. Similarly, in the case in which the common subsentence P is true, we know (by the value property again,
because P and true have the same truth value and 9[P] is true) that the second of the disjuncts, g[true], is
true.

We have established the soundness of the ground version of the resolution rule when applied to ground
sentences, which contain no variables. We require the sentences to be ground because the justification
depends on the value property, which holds only for ground sentences. We can actually apply the ground
version of the rule to sentences with variables; the soundne3 of such applications follows from the justification
for the general version of the rule, which we present later.

We now discuss an important strategy for controlling the resolution rule.

THE POLARITY STRATEGY

Murray's [821 polarity strategy allows us to consider only those applications of the resolution rule under
which at least one occurrence of P is positive (or of no polarity) in FJP] and at least one occurrence of P is
negative (or of no polarity) in g[]P. In other words, not all the subsentences that are replaced with false are
negative and not all the subsentences that are replaced with true are positive. This strategy blocks many
useless applications of the rule and rarely interferes with a reasonable step.
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The intuitive rationale for the polarity strategy is that it is our goal to deduce the sentence false, which
is more false than any other sentence. By replacing positive sentences with false and negative sentences with
true, we are moving in the right direction, making the entire sentence more false.

Example

Suppose our deduced set contains the sentences

p€a) 1or q(b)

and

9:if rp-(a) -then q(b).

These sentences have occurrences of a common subsentence p(a), of positive and negative polarity, respec-
tively, as indicated by the annotation. By application of the resolution rule, we obtain the sentence

false or q(b)
or

if true then q(b),

which reduces to q(b) under transformation.

Let us reverse the roles of our sentences.

7 : if p -(a)- then q(b)

9,'.-p a: or q(b).

The sentences still have occurrences of a common subsentence p(a). However, it is in violation of the polaxity
strategy to apply the rule for the sentences in this order, because now the occurrence of p(a) is negative in

jr, i.e., it is not positive or of no polarity. Also, the polarity of p(a) is positive in g. If we insist on applying
the resolution rule anyway, we obtain the sentence

A if false then q(b)

or
true or q(b),

which reduces to true under transformation. Although it does no harm to add the sentence true to our
deduced set, it is of no use in establishing the unsatisfiability of the set.

There are two other legal applications of the resolution rule to the same two sentences, obtained by

taking the common subsentence to be q(b) rather than p(a). Both of these applications of the rule lead us
to obtain the redundant sentence true, and both are in violation of the polarity strategy.

4,.

RESOLUTION RULE: GENERAL VERSION

" The general version of the rule allows us to instantiate the variables of the given sentences as necessary
to create common subsentences. It is expressed as follows:
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Rule (resolution, general version)

For any sentences P, P, jr[P], and 9[P], where 7 and 9 are standardized apart, i.e., they have no

variables in common, we have

jr[P

7[falsel or 90[true]

where 0 is a most-general unifier of P and f.

* More precisely,

. has one or more subsentences P, P1 , P2.

• 9 has one or more subsentences , , , .

* 6 is a most general unifier of P, P1, P2 , .-. , and , i, , .. ; hence

'P 6P = P, = ..... = f== .....

e The conclusion of the rule is obtained by replacing all occurrences of PO in 70 with false,

replacing all occurrences of PO (that is, PO) in 96 with true, and taking the disjunction
of the resultE

In other words, we apply the ground version of the rule to 78 and 98, taking PO as the common
subsentence.

The rule requires that the sentences r and 9 be standardized apart, i.e., that they have no variables
in common. This may be achieved by renaming the variables of the sentences as necessary. If both are the
same sentence, we rename the variables of one copy of the sentence.

Let us show that the general version of the rule is sound.

Justification (resolution rule, general version):

The soundness of the general version of the rule follows from the soundness of its ground version. We
show that the sentences 7 and g imply the sentence (70[false] or g6[true]).

We suppose that [under a given interpretation] the sentences 7 and 9 are true and show that (FO[false]

or 96[true]) is also true. It suffices (by the definition of truth for a nonground sentence) to show that any

ground instance of ( '0 falsel or 96[truel) is true.

Because 7 and 9 are true, we know (by the instantiation lemma) that .76 and 90 are true and hence
(by the definition of truth for a nonground sentence) that every ground instance of 76 and 96 is true. But
any ground instance of (70[false] or C9gtruc') is the result of applying the ground version of the rule to the

corresponding ground instance of 76 and 96; therefore it is also true.

The general version of the rule includes the ground version as a special case, in which the most-general

unifier 6 is the empty substitution { }.
'S

The following illustration of the general resolution rule is extracted from t h, derivation of a biih.ry-sea,ch
real-number square-root program.
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Example

- - In the theory of the nonnegative real numbers, suppose our deduced set contains the sentence]+
not (y2 < a and not [(y + E)2 < a ),

where y is a variable and a and c are constants. (The sentence is negated because it is deduced from the
negation of the original theorem.)

V* We are about to apply the resolution rule to this sentence and itself. Therefore let us produce another
Va copy of the sentence and standardize the two sentences apart; i.e., we rename the variable of the second

sentence

9: not ;25a and not (( + C)2 < a)).

The boxed subsentences

P:(y +e)' <a

and

are unifiable, with most-general unifier

-: {--y + E}.

* To apply the rule, we replace all occurrences of PO in 70 with false, replace all occurrences of .O in 90 with
true, and take the disjunction of the results, obtaining

not (y 2 < a and not false)
,.or

not (true and not (((y + e) + E)' < a)).

This sentence reduces under transformation to

not (y 2 < a) or ((y + E) + E) 2 < a.

The above application of the rule is in accordance with the polarity strategy, because the boxed sub-
sentence P is positive in jr and the boxed subsentence is negative in 9.

The resolution rule presented here is an extension of the rule of Robinson 1651 to the nonclausal case.
Robinson's rule applies to clauses of the form

7 : P or 7'

9 : (not ) or 9',

where P and i are unifiable propositions, with most-general unifier 0, and 7' and 9' axe themselves clauses.
Robinson's rule deduces the new sentence

7'9 or

The resolution rule presented here deduces, from the same sentences 7 and g, the new sentence

false or P0'
or

(not true) or 9'9.

This sentence reduces under transformation to (P6 or '), the same sentence deduced by Robinson's version
of the rule.

. . . . - a
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Nonclausal resolution was developed independently by Manna and Waldinger [801 and Murray [82]. The
resolution and transformation rules together have been shown by Murray to provide a complett 'ystem for
first-order logic. An implementation of a nonclausal resolution theorem prover by Stickel [821 employs a
connection graph strategy.

5. THE RELATION REPLACEMENT RULE

We now begin to extend our nonclausal deduction system to give special treatment to a binary relation
-4. The two new rules of the extension allow us to build into the system instances of the polarity replace-
ment proposition, just as the paramodulation and E-resolution rules allow us to build in instances of the
substitutivity of equality.

Recall that, according to the polarity replacement proposition, for any sentence P(x+, y-) and binary
relation -4, the sentence

if z -4 Y
then if P(x+ , y-) then P(y+, x-)

is valid.

If we could add this sentence to our deduced set for each relevant sentence P(x+, y), we could achieve a
considerable abbreviation of the proof, at the cost of a dramatic explosion of the search space. The extended
system will behave as if the sentences were present, achieving the same abbreviation of the proof and, at the
same time, collapsing rather than exploding the search space.

We begin with the relation replacement rule, which is our generalization of the paramodulation rule.

THE GROUND VERSION

With respect to a given relation -4, the rule allows us to replace subexpression occurrences with larger or
smaller expressions, depending on their polarity. The ground version of the rule which applies to sentences
with no variables, is as follows:

Rule (relation replacement, ground version)

For any binary relation -4, ground expressions s and t, and ground sentences Y'[s -4 t] and g(s + t-),
we have

7[s -4 t]
(+ t-)

.lfalsej or g(t + , a-).

Here g(t+, s-) is obtained from g(5+ , t-) by replacing certain positive occurrences of s with t
and replacing certain negative occurrences of t with q, where polarity is taken in 9(s+, t-) with
respect to -.

In other words, if Y[s - tj and (s', t-) are sentences in our de',ed set, we can add to the set the sentence
(Y'false: or 9(t 4 , s-)).

For a particular relation -o, we shall refer to this rule as the -4-replacenient rule: thus, ,'e have a <-
replacement rule, a <-replacement rule, and so forth. Although the rule allows us to replace occurrences in

"--
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g(s+, t-) of both expressions s and t at the same time, it is typically applied to replace occurrences of one or
the other expression, but not both. Subsequent application of transformation rules, to remove occurrences
of the truth symbols true and false, may be regarded as part of the relation replacement rule itself.

There is a polarity strategy for the relation replacement rule, which allows us to apply the rule only if
some occurrence of s -4 t is positive (or of no polarity) in 7[s -, t].

pNaturally we may also require that some occurrence of s or t is actually replaced; otherwise, g(t+, s-)
is identical to 9(s + , t-), and the sentence we obtain is (Y[falsej or g(s + , t-)); this is weaker than the
sentence g(s+, t-), which was already in the deduced set.

In illustrating the rule we draw boxes around the matching occurrences of s and t.

Example

In the theory of the nonnegative integers, suppose our deduced set contains the sentences

if P (s)
then ( <t)+

and

Note that the boxed occurrence of s in g is positive with respect to the less-than relation <. Therefore we
." can apply the <-replacement rule to replace the occurrence of s in g with t, to deduce

if P ( s j o r s < t 2

which reduces under transformation to

(not p(s)) or s < t2 .

The above application of the rule is in accordance with the polarity strategy, because the occurrence of
" s < t is positive in . Note that not every occurrence of s in 9 was replaced in applying the rule.

In a system without the relation replacement rule, we could have deduced the same conclusion by
.-,. applying the resolution rule in sequence to 7, 9, the monotonicity property

if z < y
V .,, then x2 

< 2Y

and the transitivity property

if X < y
4... then ify < z

then z < z.

The rule allows us to draw the conclusion even if the monotonictty and transitivity properties are not in our
deduced set.

The following illustration of the rule is extracted from the derivation of a program to find the maximum
element of a list of numbers.

- %N
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Example

In a theory of lists of numbers (integers, say), suppose our deduced set contains the sentencesE[if g(m) = h 1
not then not (m < +I)
or
t=[1

and E "- [i g(h) E t
9: not [then g(h) <!7 -

Note that the boxed occurrence of h in 9 is negative with respect to <. Therefore we can apply the
<-replacement rule to replace the occurrence of h in 9 with m, to deduce

Inot if AM) 11

[then not false]
[or

or
not i g~h) E, t

not [ g(h) < m)]

This sentence reduces under true-false transformation to

t=[1
or
[if g(h) Et 1

nothen g(h) < m.

The above application of the rule is in accordance with the polarity strategy, because the subsentence
rn < h is positive in .7.

Let us now establish the soundness of the rule.

Justification (relation replacement, ground version)

We show that the given sentences jr[s -, tj and g(s + , t-) imply the conclusion (jr(false or 9(t + , s-)).
We distinguish between two cases and show that in each case one of the two disjuncts, F[false] or 9(t+, s-),
is true.

In the case in which the subsentence s -4 t is false, we know (by the value property, because s -4 t and
false have the same truth value and 7[s -4 t] is true) that the first of the disjuncts, jr[false], is true.

In the case in which q -4 t is true, we know (by the polarity replacement proposition, because 9(s+, t-)
is true) that the second of the disjuncts, 9(t+, s-), is true.

As with the resolution rule, we have established the soundness of the ground version of the relation
U;r replacement rule when applied to sentences with no variables. We will actually apply the ground version of

the rule to sentences with variables. The above justification does not extend to this case, however, because
P%, the value property only holds for ground sentences. Such applications are an instance of the following generalI version of the rule.
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THE GENERAL VERSION

We are now ready to give the general version of the rule, which applies to sentences with variables and
allows us to instantiate the variables as necessary to create common subexpressions.

Rule (relation replacement, general version)

For any binary relation -4, expressions s, t, 3, and 7, and sentences r[s -4 tj and g(g'+, T'-), where
.7 and g are standardized apart, we have

7[s -t

*4. 70[false] or g9(tO+, sO")

where 0 is a simultaneous, most-general unifier of s, " and of t, t.

More precisely,

F 7 has one or more subsentences s -4 t, s, -4 t1 , S2 -4 t2 ,.

. 9 has one or more subexpressions s3s,s 2 , .... and ,t 1 ,t2, .

. 9 is a simultaneous most-general unifier of S, S1, 32, • 1, 3, s2, . • . and of t, t1, t2 , .

ttl,t 2 , ... hence

s ~~~~~q= s =3= s ..... =' =' ..

and

tO = t1 0 = t2 9 ... FO = F = =2

*The conclusion of the rule is obtained by replacing all occurrences of (s -< t)9 in 70 with
false, replacing certain positive occurrences of sO in 99 with tO, replacing certain negative
occurrences of tO in 99 with sO, and taking the disjunction of the two results. Here polarity
is in 99 with respect to --.

In other words, we apply the ground version of the rule to 70 and 99. j

The justification of the general version of the rule, which we omit, is straightforward now that the
soundness of the ground version has been established. The proof is analogous to the proof of the general
version of the resolution rule. The polarity strategy for this rule allows us to assume that at least one

P.:' occurrence of the subsentence (s -4 t)9 is positive or of no polarity in 79.

Example

In the theory ,f ets. supppose our deduced set contains the sentences

%~ ~ ~ )hr hx or (' h(b, y)c

arid

ard:' (" i,(%a) + V) or q(u,v),

where - is the set difference function.

, .. . . . . . . .
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Note that

" 7 contains the [positive] subsentences h(x, a) C b and h(b, y) C x.

• The boxed subterms h(x, a), h(b, y), and h(u, a) and the boxed subterms b and x are
simultaneously unifiable, with most-general unifier

6: {x--b, u--b, y--a}.

" The boxed occurrence of h(u, a) is positive in g with respect to C.

Therefore we can apply the c-replacement rule, replacing all occurrences of h(b, a) C b in 76 with false,
replacing the occurrence of h(b, a) in 96 with b, and taking the disjunction of the results, to obtain

if p (b) fle
then false or

or
(cEb- v) or q(b,v).

This sentence reduces upder transformation to

(not p(b)) or (c E b - v) or q(b, v).

The above application of the rule is in accordance with the polarity strategy.

Use of the relation replacement rule allows a dramatic abbreviation of many proofs. For this reason
and because the rule enables us to eliminate troublesome axioms from the deduced set, the search space
is constricted. We have not established completeness results for the rule; judging from the corresponding
theorem for paxamodulation (Brand 1751), we expect such results to be difficult.

SPECIAL CASE: THE EQUALITY REPLACEMENT RULE

The most important instance of the relation replacement rule is obtained by taking the relation -4 to
be the equality relation =. This special case of the rule, which allows us to replace equals with eq.als, is a
nonclausal version of the paramodulation rule. It may be expressed as follows:

* Rule (equality replacement)

For any term.3 s, t, 3, and , and sentences F[s = t] and g(3, t, where 7 and 9 are standardized
apart, we have

=t]

TO1falseJ or g0(0, s6)

where 0 is a simultaneouis, most-general unifier of s, " and of t, .
.I

The notation is analogous to that for the general relation-replacement rule. We do not, need to restrict
the polarity of the replaced subterms sO and tO in g6, because any term has both polarities with respect to
the equality relation. The polarity strategy is the same as before.

The following illustration of the equality replacement rule is extracted from the derivation of an integer
quotient program.

* * 'I° ~ ~
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Example

In the theory of the nonnegative integers, suppose our deduced set contains the sentences

I : (F6--, = 0)+
and

9: not(Fz-7 <!, and (z+1).d>n).

(In the derivation, I is an axiom and g is deduced from the negation of the theorem.)

Note that

contains the (positive) subsentence 0 • u = 0.

e The boxed subterms 0 . u and z • d are unifiable, with most-general unifier

0: {z- 0, u-d}.

Therefore we can apply the =-replacement rule, replacing all occurrences of 0 d 0 in 70 with false,
replacing the occurrence of 0 • d in 96 with 0, and taking the disjunction of the results, to deduce

Sfalse
or

S"not(o nand (0+1).d> n).

" This sentence reduces under true-false transformation to

Snot (0< and (0+) d> n).

* t ,SPECIAL CASE: THE EQUIVALENCE REPLACEMENT RULE

Another important instance of the relation replacement rule is obtained by taking the relation -4 to be
the equivalence connective -. This is possible only because we regard connectives as relations over truth

values. The rule is analogous to the equality replacement rule.

Rule (equivalence replacement rule)

Fo: any sentences S, 7, 7, , 71= 7], and g(S, 7), where 7 and 9 are standardized apart, we have

7._false) or gO(7T, SO)

where 0 is a simultaneous, most-general unifier of S, 9 and of 7, 7'.

As in the equality replacement rule, we do not need to restrict the polarities of the replaced subsentences
SO and TO in 90, because any subsentence has both polarities with respect to the equivalence relation. The
polarity strategy is the same as for the general relation-replacement rule.

The following illustration of the equivalence replacement rule (or -- replacement rule) is drawn from the
derivation of a program to find the maximum of a list of numbers (e.g., integers or reals).

[ '" I

-, I ,,.', '- , , ,e , . . . . i e . , , , - , - . .. " - " - " . " . " .. "-'."-"-" ." -" ."' a" " ,.'



6. THE RELATION-MATCHING RULE 37

Example

In the theory of lists of (say) integers, suppose our deduced set contains the sentences

if not (x = { })jr]+
r: then [ [u =h or u E t

and

zEs and 1
9:not if g(z)E s

L[then z > g(z)JJ

(In the derivation, 7 is an axiom and is deduced from the negation of the theorem.)

Note that the boxed subsentences u E z and g(z) E . are unifiable, with most-general unifier

U: {,- g(Z), X Z s}.

Therefore we can apply the =-replacement rule, replacing the occurrence of g(z) E s in 96 with

g(z)=. or g(z) E t,

to deduce E if not(s ={ }) 1
then false
or

z E s and

not if [g(z) = h or g(z) c t]

then z > g(z)

This sentence reduces under transformation to

or

z E s and

not if [ -) = h or g(z) E t]

then z > g(Z)

6. THE RELATION-MATCHING RULE

We are about to introduce not a rule in itself but an augmentation of the other rules. The resolution and

relation replacement rules draw a conclusion when one subexpression in our proof unifies with another. The
relation-matching augmentation allows these rules to apply even if the two expressions fail to unify, provided

.1 that certain conditions can be introduced into the conclusion. We begin by describing the augmentation of
the resolution rule.

RESOLUTION WITH RELATION MATCHING: GROUND VERSION

This rule is our generalization of the E-resolution rule. The ground version of the rule is as follows:

.., - - --- . - .,., .. .., -.---. -,-'.-. - .',. -'-, - ..-..-,5....-.' -.. , -- .;.. j , . .- . . .- -. - -
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Rule (resolution with relation matching, ground version)

For any binary relation -4, ground expressions s and t, and ground sentences P(s+, t+ , s-, t-),
S[P(s +, 3+, t-, t-)], and g[P(t+, t+ , s-, s-)] we have

* [P(s+, s+ t-, t-)]

9[P(t+, t+, s-, 311

if s- t
then '[falsel or g[true

Here

" P(s+, t+ , s-, t-) is an arbitrary sentence, called the intermediate sentence, which may
have positive and negative occurrences of s and t; polarity is taken with respect to -4.

" The sentence jr may have several distinct subsentences P(s+, a+, t-, t-), each obtained
N.', from the intermediate sentence P(s+, t+ , s-, t-) by replacing certain of the positive

occurrences of t with s and certain of the negative occurrences of a with t.

" Similarly, g may have several distinct subsentences P(t+, t+ , s-, s-), each obtained from
the intermediate sentence by replacing certain of the positive occurrences of a with t and
certain of the negative occurrences of t with s.

For a particular relation -4, we shall refer to the above as the resolution rule with -4-matching.

Note that if all the subsentences P(s+, s+, t-, t-) and P(t+, t+ , s-, S-) were identical, we could
apply the original resolution rule, obtaining the conclusion (r[falsel or 9[truel). The augmented rule allows
us to derive the same conclusion rule even if the subsentences P do not match exactly, provided that the
mismatches occur between terms s and t of restricted polarity and that the condition s -4 t is introduced.

The polarity strategy allows us to apply the rule only if an occurrence of one of the sentences P (a+, s+, t-, t-)
is positive or of no polarity in I and if an occurrence of one of the sentences P(t+, t+ , s-, s-) is negative
or of no polarity in g.

Note that the intermediate sentence P(s+, t+ , s-, t-) does not necessarily appear in either of the
sentences of the deduced set and that the rule does not stipulate how to find such a sentence. We shall
discuss the choice of the intermediate sentence in the subsection Selection of Application Parameters.

Example

In the theory of lists, suppose that our deduced set includes the sentences

.7 p() or c E (tai1(t))

and

~:if Fc Ct+7 then q(t).

The two boxed subsentences are not identical. Let us take our intermediate sentence to be one of them,
P : c - tail(t). The subterm s+ : tail(f) is positive in c E tail(i) with respect to the proper-sublist relation
-<tt. The other boxed subsentence c E t can be obtained by replacing this subterm with t+  t. Therefore
we can apply the resolution rule with -<1j,t-matching t~o obtain

if tail(e) rst t

then p(t) or false

if true te ~)
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which reduces under transformation to

if tail(i) "<list f

then p(t) or q(e). a

We shall give some more complex examples of the application of the rule after we establish its soundness.

Justification (resolution with relation matching, ground version)

Note that (by the invertibility of partial replacement) the intermediate sentence P(s + , t+ , s-, t-) can
be obtained from any of the subsentences P(s+, s+, t-, t-) of 7 by replacing certain positive occurrences
of s with t and certain negative occurrences of t with s, where polarity is taken in P with respect to -4.
Therefore (by the polarity replacement proposition) each of the sentences

if s -4 t
(t) then if P(s + , s+, t-, t-)

then P(s+ , t+ , s-, t-)

is valid.

Also any of the subsentences P(t + , t + , s-, a-) of g can be obtained from the intermediate sentence
P(s+, t + , s-, t-) by replacing certain positive occurrences of s with t and certain negative occurrences of
t with s. Therefore (by the polarity replacement proposition again) each of the sentences

if -4 t
() then if P(s + , t+, s-, t-)

then P(t + , t + , s-, s-)

is valid.

Suppose that the sentences jr[P(s+, s+, t-, t-)] and g[P(t+, t+, s-, s-)] are true and that s -4 t.
We would like to show that then (jr[false or g[true]) is true. The proof distinguishes between two cases,

depending on whether the intermediate sentence P(s+, t+ , s-, t-) is false or true. We show that in each
case one of the two disjuncts, 7] false or 9[true], is true.

Case: P(s+, t + , s-, t-) is false

Then by our previous conclusion (t), because a - t, we know each of the subsentences P(s+, 3+, t-, t-)
of 7 is false. Because jr[P(s+, s+, t-, t-)] is true and because the subsentences P(s+, s+, t-, t-) and

false all have the same truth value, we know (by the value property) that the first disjunct, jr(falsel, is true.

Case: P(s+, t + , s-, t-) is true

Then by our previous conclusion (t), because s - t, we know each of the sentences P(t + , t+ , s-, s-)
is true. Because .[P(t+, t + , s-, s- )] is true and because P(t+, t + , s-, s-) and true have the same truth
value, we know (by the value property again) that the second disjunct, g[true], is true.

The resolution rule with relation matching must be regulated with strict heuristic controls; if the controls
are too permissive, any two subsentences may be matched.

The following example is a bit contrived but illustrates some of the power of the rule.
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Example

In the theory of sets, suppose our deduced set includes the two sentences

e E ((s+ - a) U (b - t-) U (t+ - c) U (d - t-)) +

i'% 7: . or

eE ((s+-a)u(b--aU(s+-c)U(d-t) +

and

[ cE (t+-a)U(b--)U(t+-c)U(d.) -

9: not andeE ((s+~ ) U (b-~ -) u(t+-c) U(d~ -))

Let us take our intermediate sentence to be

P : e E ((sq+ ~- a ) u (b - - ) u ( t + ~- c ) U (d - t - ) ) .

* ~The occurrences of s and t have been annotated with their polarities in P with respect to the proper-subset
relation c. Note that each of the boxed sentences in 7 may be obtained from P by replacing certain of the
positive occurrences of t with 3 and certain of the negative occurrences of s with t. Also, each of the boxed
subsentences of 9 may be obtained from P by replacing certain of the positive occurrences of s with t and

*..%, certain of the negative occurrences of t with s. Therefore we can apply the resolution rule with c-matching
.' to obtain

if a C t

then false or false

or
not (true and true),

which reduces under transformation to the sentence

not s g t). a

Note that this conclusion, obtained by a single application of the rule, is not immediately evident to the
human reader.

SPECIAL CASE: RESOLUTION WITH EQUALITY MATCHING

* ~.C.In the case in which the relation -4 is taken to be the equality relation =, the resolution rule with
relation matching reduces to a nonclausal variant of the E-resolution rule. It may be expressed (in the
ground version) as follows:

Rule (resolution with equality matching)

For any terms s and t and sentences P(, t,s,t), 7'[,P(,a, t,t,)], and 9[P(t,ta,.,)],we have

.. ' .7[P(a, a,t, t)]
• -. "9[P(t, t,a,sa)]

if s = t
then 7[falsel or 9[truel. .j

-Is -r -A
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Here P(s, s, t, t) and P(t, t, s, s) are obtained from P(s, t, s, t) by replacing certain occurrences of s with t and
certain occurrences of t with s. In other words, all the subsentences P(s, a, t, t) and P(t, t, s, s) are identical
except that one may have occurrences of a where another has occurrences of t. We do not need to restrict
the polarities, because every subterm of a sentence is both positive and negative with respect to the equality
relation.

MULTIPLE MISMATCHED SUBSENTENCES

The resolution rule with relation matching can be extended to allow several corresponding pairs of
subexpressions a,, t1, s 2 ,t2, . .. and s,,, t,, rather than a single pair s, t, and several binary relations -41,-42
, .... and -,. rather than a single binary relation -4. To write the extended rule succinctly, we abbreviate
1,s .3.,8,. as i,tPt 2, ... ,t, as t,-4 1,-4 2 , . . . , and -4n as -4, and

sl ", t, and 32 -2 t 2 and and sn -4n tn as _

Then for any binary relations -, expressions S and i, and sentences P(++, [P( ,+,J-,)],
and g[P(i + , t+, S-, g-)], we have

. - z9 [,P (i+, i+, S-, -'

if 3 "S E
then 7[false] or 9[true].

The extended rule is easily justified, given the soundness of the original rule.

RESOLUTION WITH RELATION MATCHING: GENERAL VERSION

The general version of the rule allows us to instantiate the variables of the given sentences as necessary
and then to apply the ground version. The precise statement, which we omit, is analogous to the precise
statement of the general version of the resolution rule. We illustrate the application of the general rule with
an example.

Example

Suppose our deduced set contains the sentences

if q(us)
7: then pu,+

and

sn: not p

Here the annotations of the subterms within the boxed subsentences indicate their polarity in these subsen-
tences with respect to a binary relation -4.

The substitution 0 : {u - i} fails to unify the boxed subsentences of ." and 9; the results of applying 6
to these subsentences are the sentences p(e+, f+) and p(t+, f(f)+), respectively. Note that the mismatched
occurrences of e and f(t) are positive in these sentences with respect to -4.

A-,1

V.- - . . . .•. . . . . . , - - , . , .. - -- . .,v v -.-..-
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To apply the ground version of the rule to 70 and 99, let us take the intermediate sentence to be
p~+ f) We obtain

if t -- f (t)

then if q(t) or (not true),,. then[then false] o

which reduces under true-false transformation to

ifet-4 f(t)
then not q(t).

pp

SELECTION OF APPLICATION PARAMETERS

For each application of the resolution rule with relation matching, we must select the application pa-
rameters, i.e., the substitution 9, the intermediate sentence P, and the subexpressions a and t. In fact, a
satisfactory choice of application parameters is not straightforward: it depends on what other sentences are
in the deductive set. Some considerations influencing the decision are illustrated in the next few sections.

Choice of Substitution

The substitution 6 and the intermediate sentence P for applying the rule are not necessarily unique.

In the example above, consider again the boxed subsentences p(u+, u+) and p(t+, f(t)+) of I and .
Instead of the substitution 0 : {u -- t}, consider the substitution 0' : {u - f(t)}. This substitution also
fails to unify the boxed subsentences; the results of applying 0' to the boxed subsentences are the sentences
p(f (t)+, f(t)+) and p(t+, f(t)+), respectively. Note that the mismatched occurrences of f(1) and I are
positive in these sentences with respect to -4.

To apply the ground version of the rule to 70' and 96', let us take the intermediate sentence to be
p(f(t)+, f(t)+). We obtain

-5..if f (t)-4et
]then (nottrue),

[then false] or

which reduces under true-false transformation to

%if f V) -e
then not q(t).

This is not equivalent to the sentence we obtained by applying the rule with the substitution 0,

if t -< f (t)
then not q(t).

In other words, we must consider both ways of applying the rule.

To Unify or Not to Unify

, In previous examples, we have applied the resolution rule with relation matching only when it is illegal
to apply the ordinary resolution rule because the matched subsentences fail to unify. In some cases, however,
we must use relation matching to obtain a refutation even though the matched subsentences do unify and
the resolution rule could be applied.

_' .2 (A.C-"
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For example, suppose our deduced set consists of the sentences

1. Fp(z+)] or q(x+)

2. not -

3. not Fq(b~) -

4. c- 4 a

5. c -4 b,

-. where x is positive in the boxed subsentence p(z) and in the subsentence q(x) with respect to the relation
-4, as indicated by its annotation.

It is legal to apply the ordinary resolution rule to the first two sentences, taking the unifier to be

x{z +- a}, to deduce (after transformation)

*~ q(a).

However, this sentence is of no use in a refutation.

If instead we apply the resolution rule with -4-matching to the same boxed subsentences, taking the
unifier to be the empty substitution { }, we obtain (after transformation)

6. if x-4a then + .

We can then apply the resolution rule to sentences 6 and 3, taking the unifier to be the empty substitution
{ }, to obtain (after transformation)

7. if z -4 b then not (x -4 a).

We finally obtain a refutation by applying the resolution rule to this sentence and the last two sentences in
turn; the unifier is {x -- c}.

In applying the ordinary resolution rule, we committed x to be a; this turned out to be a mistake. In
applying the resolution rule with -4-matching instead, we left z free to be any element such that x -4 a; in
particular, we could then take x to be c.

Choice of Mismatched Subexpressions

In the examples of resolution with relation matching we have seen, we have always taken the mismatched
subexpressions s and t to be as small as possible. Sometimes this choice costs us a proof.

For instance, suppose our deduced set consists of the sentences

1. pf (a) ]+

2. not p(f M)) I

3. f(a) = f

If we apply the resolution rule with equality matching to the first two sentences, taking s to be a and t

to be b, we obtain

if a = b
then false or not true,

which reduces under transformation to

not (a = b).
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This sentence is of no use in a refutation.

On the other hand, if instead we apply the same rule taking s to be f(a) and t to be f(b), we obtain

if f(a) = f(b)
then false or not true,

which reduces under transformation to

not (f(a) = f(b)).

A refutation can be obtained immediately by applying the resolution rule to the third sentence and this one.

In the preceding examples, we have seen that in applying the resolution rule with relation matching,the choice of appropriate application parameters, i.e., the substitution 0, the intermediate sentence P, and
the mismatched subexpressions a and t, are not unique and depend on the other sentences in the deducedset. Digricoli [831 provides an algorithm to generate all legal sets of application parameters. This algorithm
is phrased in terms of his variant of the E-resolution rule but extends readily to the general, nonclausal
case. Digricoli also suggests a heuristic viability criterion for selecting a single appropriate set of application
parameters; this criterion appears to extend to the general case as well.

REPLACEMENT WITH RELATION MATCHING: GROUND VERSION

We have shown how to augment the resolution rule to apply even if the matched subsentences are not
entirely unified by the substitution. We now introduce an analogous augmentation of the relation replacement
rule.

Rule (replacement with relation matching, ground version)

For any binary relations -41 and -42, ground expressions s, t, u(s+, t+, s-, t-), and v(s+, t+, a-, t-),
and ground sentences

[us+, ,s+, t-, t) - V(S+, s+, t-, t-)]

and

t , s -, q-)+, V(t+, t+, 'g-, a-)-),

we have

9(u(t + , t+ , s-, s-)+, v(t+, t+ , s - , S - ) - )

~ f s - 2 t+
then F[false] or g(v(t+, t+ , s s -)+, u(t+, t + , Is))

Here

" The expressions u(a+, t+, s-, t-) and v(.,+, t + , s-, t-) are arbitrary expressions. The
sentence u( , t + , t-) -41 v(s+, t', s -, t-) is called the intermediate sentence.

" The subsentences u(s + , s+, t-, t-) -41 v(s+, s+, t-, t-) of F are obtained from the
intermediate sentence by replacing certain positive occurrences of t with a and certain
negative occurrences of s with t, where polarity is taken in the intermediate sentence with
respect to -2.

" The subexpre~sions u(t+, t + , s-, 3-) and v(t+, t + , s-, s-) of 9 axe obtained from
u(s + , t+ , s-, t-) and v(s+, t +, 8-, t-), respectively, by replacing certain occurrences of s
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with t and certain occurrences of t with s, where again polarity is taken in the intermediate
sentence with respect to -42.

- The subsentence 9(v(t+, t', s, s-) + , u(t + , t + , s-, s-)-) of the conclusion is obtained
from g(u(t+, t + , s-, s-)+, v(t - , t + , s-, s-)-) by replacing certain positive occur-

"'t rences of u(t+, t + , s-, s-) with v(t+, t+ , s-, s-) and certain negative occurrences of
v(t + , t + , s-, s-) with u(t + , t + , q-, s-), where the polarity ofu and v is taken in 9 with
respect to -. I

For particular binary relations -1 and -42, we shall call this the -41-replacement rule with -42 -matching.
Note that ifu(t+, t+, s-, s-) and v(t+, t+, s-, s-) were identical to u(s+, s+, t-, t-) and v(s+, s+, t-, t-),
respectively, we could apply the original -ol-replacement rule without -42-matching, obtaining the conclusion

.F[flse] or g(v(t+, t+, s, s-)+, u(t+, t+, s,-)-).

The augmented rule allows us to derive the same conclusion, even if the subexpressions do not match exactly,
provided that the mismatches occur between subexpressions s and t of restricted polarity with respect to
- and that the condition s 42 t is added.

• .Example
In a theory that includes the lists and the integers, suppose our deduced set contains the sentences

7 : (length(m-) - a) or p(m)

and

: if q(9) then ( length(e-) + >

where t and m are lists and a and b are integers.

4 The two boxed subexpressions are not identical, so we cannot apply the original <-replacement rule.

To apply the augmented rule, let us take our intermediate sentence to be length(e) < a. With respect to the
proper sublist relation -<uit, the subterm 3- : t is negative in the intermediate sentence u -1 v : length(f) < a.
From this sentence we can obtain the subsentence length(m) :- a of 7 by replacing the i egative occurrence

S.F of t with t- m. Therefore, by the <-replacement rule with -jig-matching, we deduce

then false or p(m)
o r

if 7(e) then a> b.

Here the subsentence a > b of i~he conclusion is obtained from the subsentence leng h(t) > b of 9 by replacing
_ a positive occurrence of u + : length(f) with v + : b, where polarity is taken in 9 with respect to the weak

less-than relation <. The conclusion reduces under transformation *o

'"7p if ef_, 4 tm
then p(m) or

"f q(f) then a > b.

Now let us establish the soundness of the rule.

]. Justification (replace:ment with relation matching, ground version)

Note that (by the invertibility f partial replacements), the intermediate sentence u(s, , , t ) "

t s , t-) can he obtained from any of the subsentences u(s + , s + , t , t--) v( s  
, t) of

',,-, ~~~~~~~~~~~~..- -..-,....:....- -. ... /.........-........... .-. -. •.-.........-....- . . .... ..- .'.", .
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7 by replacing certain positive occurrences of s with t and certain negative occurrences of t with s, where
polarity is taken in the subseutences with respect to -42. Therefore (by the polarity replacement proposition),
each of the sentences

if s_ 2 t
(t) then if u(s+, s+, t-, t-) -41 v(s+, s+, t-, t-)

then u(s+, t + , s-, t-) -41 v(s+, t, s-, t-)
"J is valid.

Also any of the sentences u(t+, t + , s-, s-) -1 v(t+, t+ , s-, s-) can be obtained from the intermediate
sentence u(s+, t+, s-, t-) -41 v(s+, t + , s-, t-) by replacing certain positive occurrences of a with t and
certain negative occurrences of t with a, where polarity is taken in the intermediate sentence with respect to
-42. Therefore (by the polarity replacement proposition again) each of the sentences

if S -2 t
() then if u(s + , t + , s-, t-) "41 v(s + , t + , s-, t-)

then u(t+, t + , s-, s-) -41 v(t+, t+, s-, s-)

is valid.

Furthermore the subsentence 9(v(t+, t + , s-, s-) + , u(t+, t+ , s-, s-)-) of the conclusion can be
obtained from the given sentence 9(u(t+, t + , a-, s-) + , v(t+, t + , a-, 9-)-) of the deduced set by replacing
certain positive occurrences of u(t+, t+ , s-, s-) with v(t+, t + , s-, a-) and certain negative occurrences of
v(t+, t + , s-, s-) with u(t+, t + , s-, s-), where polarity is taken in 9 with respect to -41. Therefore (by
the polarity replacement proposition once again) each of the sentences

if u(t+, t+, s-, S-) -41 v(t+, t+, " , I-)
(tt) then if g(u(t + , t + , s-, s-) + , v(t+, t+, s-, s-))

then 9(v(t+, t+, s-, s-)+, u(t+, t+, s-, s-)-)

is valid.

Suppose that the ground sentences

,[u(s+, s+, t-, t-) -1 , (s+, 8+, t-, t-)] and 9(u(t+, t+, a-, 3-)+, v(t+, t+, s-, s-)-)

are true and that s -2 t. We would like to show that then

r[false] or 9(v(t+, t+, s-, s-) + , u(t+, t+, s-, 3))

is true. The proof distinguishes between two cases, depending on whether the intermediate sentence is false or
true. We show that in each case one of the two disjuncts, Y"[falsel or 9(v(t+, t + , s, s)+, u(t+, t, -, a-)-),

*" is true.

Case: u(s+, t + , s-, t-) - v(s+, t + , s-, t-) is false

Then by our previous conclusion (t), because s 72 t, we know each of the subsentences u(s+, s+, t-, t-) -4 1
v(s+, s+, t-, t-) of r is false. Because .[u(s + , s+, t-, t-) -41 v(s+, s+, t-, t-)] is true and because the
sentences u(s , 3+, t-, t-) -1 v(s + , s+, t-, t-) and false all have the same truth value, we know (by the
value property) that the first disjunct, 7[false], is true.

Case: u(s+, r, s-, t-)-l v(s+, t-, s-, t-) is true

Then by our previous conclusion (t), because s -2 t, we know each of the sentences u(t+, t+ , s-, S-) -41
v(t+, t s-, s ) is true. Therefore by several applications of our previous conclusion (tt), because

9(u(+t, t+, a-, -)+, v(t+, t + , s S-)-)

,3 K .- P7" .L, L l ,,r'.,.., .r. ..- .-... ,.,.: € . ... .. .....- . • . , , ,. , , . -
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is true, we know that the second disjunct,

(V(t+,' t+, S-, S-)+, u(t+ , t+, s, ))

is true.

In each case, we have shown that the desired conclusion is true.

REPLACEMENT WITH RELATION MATCHING: GENERAL VERSION

The general version of the rule allows us to instantiate the variables of the given sentences as necessary
and then to apply the ground version. We omit the precise statement, which is analogous to the general
version of the relation replacement rule, but we illustrate the general version with an example extracted
from the derivation of a program to sort a list of numbers.

*Example

In a theory of lists of (say) integers, suppose our deduced set contains the sentences

.: perm (j C ((U) 3 2), Y1 E ((U) ( Y) perm(i 1 z, Yi D Y2)]+

,- and

not (ordered(z) and I perm(e+, z) ).

Here the term z 1 a X2 is the result of appending the lists x, and x2, and the term (u) is the list whose sole
element is u. Also, perm(t, z) holds if the list t is a permutation of the list z, and ordered(z) holds if the
elements of z are in (weakly) increasing order. In the derivation, I is one of the axioms for the permutation
relation, which states that two lists are permutations if they are still permutations after dropping a common
element, and g is the negation of the theorem, which states the existence of an ordered list that is a
permutation of a given list.

The results of applying the substitution

0 : {Z - yiC]((U) 13Y2 )}

to the boxed subsentences are

permn((z:1 0((U) 0 X 2 ))', Y1 13((U E3 Y2))

and

perm(e+, y o ((U) - Y2)).

The mismatched subterms

xio((uIw[x 2 ) and t

are positive in their respective subsentences with respect to the perm relation. (Because this relation is
symmetric, they also happen to be negative.) The boxed subsentence perm(t, z) is posi;ive in gf with respect
to the equivalence relation _. (It also happers to be negative.) Therefore, by the -- replacement rule with

perm-matching, we may deduce the sentence

if perm(xj 0i ((U) ci X2 ), e
then false

or
not (ordered(YI' 11 ((u c Y2)) and perm(xj o z2, y, o y2))

. .
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which reduces under transformation to

* if perm(zi 0 (Mu a X2 ), t)
then not (ordered(YI 0 ((U) o y2)) and perm(Xl 0 X2, Y11 0Y2)). j

RELATION MATCHING VERSUS RELATION REPLACEMENT

The relation matching and relation replacement rules play complementary roles, and one might expect

that a single deductive system would employ one or the other rule but not both. After all, in clausal equality

systems, paramodulation and a variant of E-resolution have each been shown to be complete (Anderson [70],

Digricoli [83], and Brand [75]) without including the other. Moreover, by incorporating both rules, we admit

a troublesome redundancy: The same conclusion can be derived in several ways.

On the other hand, it often turns out that a proof that seems unmotivated or tricky using only one of

the rules seems more straightforward using a combination of both. For instance, in an example of a previous

section, we applied the resolution rule with relation matching to the sentences

if q(u)

then p(u+, Iu+)

and

9: not IP +, f(f)+)

taking the substitution to be

": {u4-e},

to obtain after transformation

if Ie - sf(t)I
then not q(e).

, If our deduced set also contains the sentence

we can further deduce (by resolution) the sentence

not q(g.

Now suppose our deductive system includes the relation replacemient rule but not the relation-matching

rule. Then to deduce the same conclusion not q(t), we would have to apply the relation replacement rule to

the sentences

and

not fm7' ()

to obtain (after transformation)

notF -.f-f ), f W01

......................... -....-
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We could then obtain the same conclusion (not q(t)) by resolution applied to this sentence and the sentence

i: qf(u)

then u)

Although both sequences of inference lead to the same conclusion, the earlier proof seems better mo-
tivated: Each step is based on matching subexpressions that already possess a high degree of syntactic
similarity. In contrast, the above proof seems rather gratuitous: The application of the relation replacement
rule is based on matching the variable v with the constant t. There is no reason to perform this step except
as a preparation for the subsequent resolution step.

Examples can also be exhibited for which a proof employing the replacement rule is well-motivated but
the corresponding proof using the matching rule appears strained. For instance, in the theory of integers,
use of the =-replacement rule and the axiom u + (-u) = 0 allows us to simplify a subterm of form t + (-t)
to 0. T' ire are only permitted to use the relation-matching rule, we must leave the subterm intact, and hope

,* that we attempt to match it against a corresponding subterm 0 later in the proof.

We expect that by including both rules together in a system we shall be able to apply more restrictive
• ,strategies to each of them. Consequently, we shall obtain a smaller search space than if we had included

either of the rules separately.

7. STRENGTHENING

The relation replacement rule of Section 5 does not always allow us to draw the strongest possible
conclusion. In this section we establish a stronger form of the polarity replacement lemma and use it to
develop a stronger relation-replacement rule.

We motivate the strengthening of the rule with an example. In the theory of the integers, suppose our
deduced set contains the sentences

Fs: I-- < t

and

a:< a-I +2.

Because the occurrence of s in 9 is positive with respect to the less-than relation <, the<-replacement rule
allows us to replace s with t and deduce that (after transformation)

a < t+ + 2.

- From these two sentences, however, we should be able to deduce the stronger result

a < t +2.

Similarly, from the sentence s < t and not (a - s > b), we should be able to deduce not (a - t > b) rather
than merely not (a - t > b).

Unfortunately, the rule as we have presented it does not yield these more useful conclusions; the strength-
ened relation-replacement rule will. But first, we must introduce some preliminary notions.

THE STRENGTHENED POLARITY-REPLACEMENT LEMMA

The strengthened rule depends on the following basic result:
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Lemma (strengthened polarity replacement)

Consider arbitrary expressions e(x, y) and e'(x, y) and binary relations -4 and -2. The sentence

if X -( Y'

then if e(x, Y) -2 e'(X, y)
then e(y, z) -<2 e'(Y, X)

is valid provided that the replaced occurrences of z and y satisfy the following strengthening con-
ditions [in e(x, y) and e'(x, y) with respect to -1 and -42]:

* transitivity condition

The relation -<2, the irreflexive restriction of -42, is transitive.

" top condition

The replaced occurrences of x and y are respectively positive and negative in e(z, Y) -2
e'(z,y) w. respect to -1.

" left-right condition

One of the following two disjuncts holds:

The replaced occurrences of x and y in e(x, y) are respectively negative and positive in
e(x, y) with respect to -o1 and -<2 (and some replacement is made in e(z, y))

(left disjunct)

or

the replaced occurrences of x and y in e'(x,y) are respectively positive and negative in
e'(x, y) with respect to -1 and -<2 (and some replacement is made in e'(x, y)).

(right disjunct) d

Before proving this proposition, let us illustrate it with an example.

Example (strengthened polarity-replacement lemma)

In a theory that includes the sets and the nonnegative integers, take -41 to be the proper-subset relation
C over the sets and -2 to be the weak less-than relation < over the nonnegative integers. Then -<2 is the
strict less-than relation <.

Consider the sentence

m - card(y) < n + card(x),

where x and y are sets, m and n are nonnegative integers, and card(x) is the cardinality of the set x.

According to the lemma, the sentence

if X c
then if m card(y) < n + card(x)

then m -card(x) < n + card(y)

is valid, because the replaced occurrences of x and y satisfy the strengthening conditions in rn card(y) and

n + card(z) with respect to C and <. In particular,

* The relation < is transitive; hence the transitivity condition is satisfied.

"e .: ' . . '' ' '' ' - . . . - . . • . , . .. . . . . - . . , - - -- . . . .. . .'..
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* The replaced occurrences of x and y are respectively positive and negative in m. card(y)
n + card(z) with respect to c; hence the top condition is satisfied.

e Although the replaced occurrence of y is not positive in m. card(y) with respect to C
and < (after all, m could be 0), the replaced occurrence of z is positive in n + card(z)
with respect to c and <. Hence, though the left disjunct of the left-right condition is not
satisfied, the right disjunct is.

We are now ready to establish the lemma.

Proof (strengthened polarity-replacement lemma)

Suppose that

x -41 y and e(, y) -2 2 e'(x, y),

and that the strengthening conditions are satisfied.

We would like to show that then

e (y, X) -<2 e'(y, X).

The left-right condition was stated as a disjunction of two possibilities; we treat each possibility sepa-
rately.

Case (left disjunct): The replaced occurrences of x and y in e(x, y) are respectively negative and
positive in e(x, y) with respect to ".1 and -<2 (and some replacement is made in e(x, y)).

In this case (by the transitive polarity-replacement lemma, because z -41 y), we have

Ce(Y, X) -<2 e (X, Y).

Also (by the polarity replacement proposition and our supposition that z -1 y and e(z, y) -42 e'(z, y))
we have

e (x, y) -42 e'(y, x).
(Here we have only performed the replacements on the right-hand side; by the top condition, we know the
replaced occurrences of x and y are respectively positive and negative in e(x, y) -42 e'(x, y) with respect to

-1.) It follows that

e (, y) -<2 e'(y, x) or e(x, y) = e'(y, x).

Because e(y, x) -<2 e(x, y), we thus have (either by the transitivity of -<2 or the substitutivity of equality)
that

e(y, X) -<2 e'(y, X),

as we wanted to show.

Case (right disjunct): The replaced occurrences of z and y in e'(x, y) are respectively positive and
negative in e'(-, y) with respect to -1 and -<2 (and some replacement is made in e(x, y)).

The proof in this case is entirely symmetric to the proof in the previous case.

THE STRENGTHENED POLARITY-REPLACEMENT PROPOSITION

The strengthened rule is expressed in terms of the following notational device:

.:'.%
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Definition (strengthen accordingly)

Suppose -4 is a binary relation, s and t are expressions (either both sentences or both terms), and
. is a sentence.

If we write g as g(s,+ t-), then g(t+, s-)T denotes the sentence obtained by replacing certain
positive occurrences of s with t, replacing certain negative occurrences of t with a (where polarity
is taken with respect to -<), and strengthening accordingly as follows:

" Whenever a replacement is made in a positive subsentence of form e(s, t)- e'(s, t), where
the replaced occurrences of s and t satisfy the strengthening conditions in e(s, t) and e'(s, t)
with respect to -4 and -4, replace the occurrence of the symbol ; with :,, the irreflexive

restriction of .

" Whenever a replacement is made in a negative subsentence of form e(s, t) e'(s, t), where
the replaced occurrences of s and t satisfy the strengthening conditions in e(s, t) and C'(s, t)

with respect to -4 and , replace the occurrence of the symbol ; with ;. (Here and
are the negation, and the reflexive closure, respectively, of -. ) j

These conditions may appear mysterious at this point, but they are precisely what we need to establish
the following result, which tightens up the polarity replacement proposition:

Proposition (strengthened polarity replacement)

For any binary relation -4 and sentence P(x+, y-), the sentence

if X-4Y

then if P(z + , y-)
then P(y+, X-) T

is valid.

We illustrate the proposition with two examples.

Example

In the theory of the positive integers (excluding 0), take -4 to be the proper-divides relation -<d, and
take our sentence to be

P(x, y-) : < (x + 1)2 or q(x).

Then according to the proposition, the sentence

if x -<,is y

then if a < (x + 1)2 or q(x)
then a < (y + 1) 2 or q(x)

is valid. Note that the symbol < has been replaced by its irreflexive restriction < as a result of the strength-

ening. This is because

" The subsentence a < (x + 1)2 is positive in P(x+, y-).

* The replaced occurrence of x in a < (z + 1)2 satisfies the strengthening conditions in a

and (z + 1)2 with respect to -<div and <. In particular

a The relation < is transitive; hence the transitivity condition is satisfied.
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The replaced occurrence of x is positive in a < (z + 1)2 with respect to -<ds.;
hence the top condition is satisfied.

" The replaced occurrence of x is positive in (z + 1)2 with respect to -<di. and <;
hence the right disjunct of the left-right condition is satisfied.* .1

Example

In a theory that includes the lists and the nonnegative integers, take -, to be the tail relation -<tail over
the lists and take our sentence to be

P(x+, y-): if length(xzo) < length(y) +m then q(x,y),

where x, y, and t are lists, m is a nonnegative integer, and length(t) is the number of elements in the list t.
Then according to the proposition, the sentence

if X "<tail Y

then if if length(x o t) < length(y) + m then q(z, y)
then if length(y a t) < length(z) + m then q(z, y)

is valid. Note that here the symbol < has been replaced by < as a result of the strengthening. This is
because

S-* The subsentence length(x o t) < length(y) + m is negative in P(z + , y-).

e The replaced occurrences of x and y satisfy the strengthening conditions in length(z 0 t)
and Length(y) + m with respect to "<fail and 1, that is >. In particular

" The relation >, the irreflexive restriction of >, is transitive; hence the transitivity
condition is satisfied.

a The replaced occurrences of z and y are positive and negative, respectively, in
the sentence length(x a] t) > length(y) + m with respect to "<tair; hence the top
condition is satisfied.

- The replaced occurrence of z is negative in length(x oi f) with respect to -<tail
and >; hence the left disjunct of the left-right condition is satisfied. (As it turns
out, the replaced occurrence of y is also negative in length(y) + m with respect
to -<t,,il and >; hence the right disjunct is also satisfied.) .

Let us now prove the proposition.

Proof (strengthened polarity-replacement proposition)

We suppose that

x -4 y and P(x+ , y-),

and show that then

,P(y, .- )I.

The sentence P (y+ -)T is obtained from P(x+, y-) by replacing certain subexpressions with others. We
* , show that each of these replacements makes the sentence "truer," in the sense that it produces a sentence

implied by the original.

We consider separately three kinds of replacement:

:,:,":. ~~ % ./. :. 'A ," . -?-,::?-:".,,':-. ,'- . ' ":.:: z:- -- '."..": "-"'¢- -,
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Replacing a positive subsentence of form e(x, y)-: e'(x, y) with e(y, x) -< e'(y, z), where the replaced
occurrences of x and y satisfy the strengthening conditions in e(x, y) and e'(x, y) with respect to -4
and ;.

In this case, because z -4 y, we have (by che strengthened polarity-replacement lemma) that

if e(X, y) e'(x, y)

then e(y, z) 7< e'(y, x).

Therefore, because the replaced occurrence of e(x,y) e'(x,y) is positive in P(x+, y-), we know (by the
*original polarity-replacement proposition) that replacing it with the "truer" subsentence e(y, x):< e'(y, z)

makes the entire sentence truer.

* Replacing a negative subsentence of form e(z, y) e'(x, y), with e(y, z) ; e'(y, x), where the replaced
occurrences of z and y satisfy the strengthening conditions in e(x, y) and e'(z, y) with respect to -4
and 7 (the negation of ;).

In this case, because z -4 y, we have (by the strengthened polarity-replacement lemma, recalling that
is the irreflexive restriction of A)

if e (X, Y)C e(X, Y)

then e(y, x) e'(y, x)

or, equivalently (taking the contrapositive),

if e(y, X) e'(y,z )
then e(x, y> -4 e'(x, y).

Therefore, because the replaced occurrence of e(x, y)- e'(x, y) is negative in P(x+, y-), we know (by the
original polarity-replacement proposition) that replacing it with the "falser" sentence e(y, x); e'(y, x) will
make the entire sentence falser.

e Replacing a positive occurrence of x with y or a negative occurrence of y with x, where polarity is
with respect to -4 and where the replaced occurrence is not within the scope of any strengthened
relation :;.

* In this case, the replacement makes the sentence "truer," by the original polarity-replacement proposi-
tion.

THE GROUND VERSION

We can now express the stronger version of the relation replacement rule. The ground version of the
rule is as follows:

Rule (strengthened relation replacement, ground version)

For any binary relation -4, ground expressions s and t, and ground sentences F[s -4 tj and g(s + , t-),
we have

FIs -4 t)

9(s + , t-)

.T[falsel or 9(t + , s-)t
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Here 9(t+, s-)T is the result of replacing certain positive occurrences of a with t, replacing certain

negative occurrences of t with s, and strengthening accordingly, where polarity is taken in 9 (s + , t-)

with respect to --. We assume that at least one replacement is made.

Let us illustrate the ground version of the rule with two examples.

Example

In the theory of the positive integers (excluding 0), suppose our deduced set contains the sentences

and .'7 if p(s) then F ]-<d,, t

I and

9y: a <(L +1)2 or q(s),

where -< iv is the proper divides relation. Then we can apply the strengthened -<di,-replacement rule to

replace the boxed occurrence of . in 9 with t and to strengthen accordingly, obtaining

.71 if p(s) then false
or

a < (t + 1)2 or q(s).

This sentence reduces under transformation to

(nol p(s)) or a < (t + 1)2 or q(s).

* . The relation symbol < was replaced by its irreflexive restriction < because a < (8 + 1)2 is positive and

because s and t satisfy the strengthening conditions in a and (a + 1)2 with respect to -<di,, and <, as we

have seen in a previous example.

Example

.r. In a theory that includes the sets and the nonnegative integers, suppose our deduced set contains the

sentences

. (s, t) or __

not (q(s,t) and m card(& < n+ card(K ),

S-..., '' I t tr- sets, rn and n are nonnegative integers, and card(s) is the cardinality of the set s. Then

A*. illspq sh trengthened c-replacement rule to replace the boxed occurrences of s with t and t with

ii, t,- (t,itolwn ac(ordtingly, obtaining

t) or false
or

not (q(s, t) and m card(t) < n + card(s)),

ht : (after transform ati,-n),

T(s,t) or

not (q( , t) and m card(t) < n + cardls)



Sq

56 7. STRENGTHENING

The relation symbol < has been replaced by its reflexive closure < because m. card(s) < n + card(t) is
negative and because s and t satisfy the strengthening conditions in rn card(s) and n + card(t) with respect
to C and ), that is, >. In particular,

* The irreflexive restriction > of > is transitive; hence the transititity condition is satisfied.

e The replaced occurrences of s and t are respectively positive and negative in m -card(s) <
n + card(t) with respect to C and >; hence the top condition is satisfied.

t S * The replaced occurrence of t is negative in n + card(t) with respect to c and >; hence the

right disjunct of the left-right condition is satisfied.

Let us now establish the soundness of the rule.

Justification (relation replacement rule, ground version)

The proof resembles the justification of the original relation-replacement rule.

We suppose that the given sentences r[s -4 t] and g(s+, t-) are true and show that the newly deduced
sentence (7[false or 9(t + , s-)T) is also true. We distinguish between two cases and show that in each case
one of the two disjuncts, 7[falsel or 9(t+, s-)T, is true.

In the case in which the subsentence s -4 t is false, we know (by the value property, because s -4 t and
false have the same truth value and Y[s -4 t] is true) that the first of the disjuncts, F[falsel, is true.

In the case in which s -4 t is true, we know (by the strengthened polarity-replacement proposition,
because g(s + , t-) is true) that the second of the disjuncts, 9(t + , s-T, is true.

THE GENERAL VERSION

The general version of the rule allows us to instantiate the variables of the sentences as necessary to
create common subexpressions.

Rule (strengthened relation replacement, general version)

For any binary relation -o, expressions s, t, 3, and , and sentences 7[s -4 tj and 9('+, where
jr and 9 are standardized apart, we have

Y1s -t

7-[falsel or gO(tO+, so7)T,

where 0 is a simultaneous, most-general unifier of s, 3' and of t,

As usual, to apply the general version of the rule to sentences 7 and 9, we apply its ground version to 70
and 90. The justification, which is straightforward, is omitted. As before, the polarity strategy for the rule
allows us to assume that a least one occurrence of the subsentence (s -4 t)O is positive or of no polarity in

• €... 79.
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8. EXTENSIONS

The concepts in this paper are being extended in several directions. We briefly indicate several of these
- here.

EXPLICIT QUANTIFIERS

The system we have described deals with sentences that have had their quantifiers removed by skolem-
ization. It is impossible, however, to remove quantifiers that occur within the scope of an equivalence (s)

_ connective or in the if-clause of a conditional (if-then-else) connective without first paraphrasing the con-
nective in terms of others. If several of these connectives are nested, the paraphrased sentence becomes
alarmingly complex.

In an earlier work (Manna and Waldinger [821), we extend the deductive system to sentences that
may have some of their quantifiers intact. In many cases, we can complete the proof without removing all
the quantifiers. If these quantifiers are in equivalences or if-clauses, we need not paraphrase the offending
connectives. Thus, we not only retain the form of the original sentence, but also can use the equivalences
we retain in applying the equivalence replacement rule.

POLARITY WITH RESPECT TO AN EXPRESSION

We have used the notion of polarity with respect to a relation. Because a function is a special case of
a relation, we can define polarity with respect to a function accordingly. Rather than restricting ourselves
to the functions denoted by the function symbols in our deduced set, we prefer to consider the functions

corresponding to particular expressions in the set.

Roughly speaking, suppose e[s] is a ground term; then e[s[ corresponds to a binary relation "4, defined
by the sentence

z - y1 y e[X] = y.

We may define polarity with respect to [Il just as we would with respect to any binary relation.

For example, in the theory of the integers, the relation -4,1 corresponding to the term e[s] : s + 1 is
defined by the sentence

X- %'els] Y - x+ l = y.

(In fact, this relation turns out to be the predecessor relation -<pred we have seen earlier.) The relation
natnum(x), which holds if z is a nonnegative integer (natural number), is positive over its argument with
respect to [,j, for we have

if X "4r[xJ Y

then if natnum(z)

then natnum(y).

We can then establish an expression replacement rule analogous to our relation replacement rule; i.e.,
in the ground version:

For any expressions s and e.sl and ground sentence 9(s±, es]-), we have

.9se[,s]-)

. ., . - ,-)T
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Here g(e[s]+, s-)t is obtained from g(s+ , e[s]-) by replacing certain positive occurrences of a with e[s],
replacing certain negative occurrences of e[s] with s, and strengthening accordingly, where polarity is taken
in g(s+ es-) with respect to -%CoJ.

For example, in the theory of the integers, if our deduced set contains the sentence

9 : not [natnum((s + i)-)]

we may deduce the sentence

not [natnum(s)],

because the occurrence of s + 1 is negative in g with respect to the relation corresponding to the expression
s+1.

We can also define expression-matching rules analogous to our relation-matching rule.

For example, in the theory of lists, suppose our deduced set contains the sentences

and

Here the term bos is the result of inserting the element b before the first element of the list s. By the resolution
rule with expression matching, whose precise statement we omit, we may deduce (after transformation), the
contradiction false, because s is positive in the boxed sentence a E s with respect to the relation corresponding
to b o S.

CONDITIONAL POLARITY

Sometimes it is convenient to extend the notion of polarity to depend on the truth of certain conditions.
For example, in the theory of integers (including negative integers) with respect to the relation <, the
occurrence of s in the sentence

a< ba

might be regarded as positive if b is nonnegative and negative if b is nonpositive. (If b is 0, the occurrence
might have both polarities). We could then adapt the relation replacement and relation matching rules to
use this conditional polarity, imposing the appropriate conditions on whatever conclusion they draw.

More precisely, we define the notion of conditional polarity so that if x and y are respectively positive
and negative in P(x+ , y-) with respect to the binary relation -4 subject to the condition Nix, y, QJ, then the
sentence

Y x, y, then if P(x + , y-)
[7' then P(y+, x-)t

is valid. Here Q denotes an arbitrary sentence; the indicated polarities of the replaced occurrences of x and

y are subject to the condition )z, y, Q1.

For example, according to this notion of conditional polarity, in the theory of the integers, the occurrence
of z in the sentence

a <b+ z 2
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is positive with respect to the relation < subject to the condition

[X, Y, Q] : if z>0
then Q.

Consequently, we have that the sentence

if X > 0
A' then if x < y

then if a~b+x2

then a < b + y'

is valid. The relation < was replaced by < as the result of strengthening.

In terms of this notion, we can introduce conditional versions of the relation replacement rule and
relation-matching rules. In particular, we have the conditional relation-replacement rule, i.e., in the ground
version:

For any binary relation -4, ground expressions s and t, and ground sentences J[s -4 t] and g(s+, t-),
we have

Jr[s -4 tj

9(-,+, t-)

Mljs,t,false] or 7[false] or 9(t+ , s-)T.

Here the indicated polarities of the replaced occurrences of s and t are subject to the condition
Nifs, t, Q].

For example, in the theory of the integers, suppose our deduced set contains the sentences

, .if r(s, t)
"':"jr :

then s < t

and

A.a <: ab s.

Note that the occurrence of s in 9 is positive with respect to the relation < subject to the condition

if b > 0
then Q

*Therefore, according to the conditional <-replacement rule, we may deduceLif b > 0 if r(s,t) 1
then falsel or [then false] or a < b t,

which reduces under transformation to

, , The (not (b > 0)) or (not (r(s, t))) or a < b t.

The conditional relation-matching rules are analogous. Of course these rules can be extended to apply
to conditional polarity with respect to ,n expression rather than a relation.

PLANNING AND THE FRAME PROBLEM

Theorern-proving techniques have often been applied to problems in automatic planning. One approach
to this application has been the formulation of a situational logic, a theory in which states of the world are

-. - 7"",.-
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regarded as domain elements, denoted by terms. Typically, an action in a plan is represented as a function
* mapping states into other states. The effects of an action can be described by axioms.

For example, the primary effect of putting one block on top of another is expressed by an axiom such as

if clcar(x, tv) and clear(y, w)

then _n(z, y, puton(x, y, w)).

In other words, if block x is put on block y in a state w, then x will indeed be on y in the resulting state
puton(zr, Y, w). The antecedent expresses the preconditions that x and y be clear before X can be put on V:
in other words, no block can be on x or on y. (The conventional blocks-world hand can move only one block
at a time.)

In a situational logic, a problem may be expressed as a theorem to be proved. For example, the pr,,h-m
of acnieving the condition that block a is on block b and block b is on block c might be phrased a. the
theorem

(3 ) [on(a, b, z) and on(b, c, z)].

The frame problem, which occurs when planning problems are approached in this way, is connected with
the requirement that we need to express not only what conditions are altered by a given action, but also
what conditions are unchanged. For example, in addition to the primary effect of putting one block on top
of another, we must state explicitly that this action has no effect on other relations, such as color; otherwise,
we shall have no way of deducing that the color of a block after the action is the same as its color before.
Therefore, we must include in our deduced set the framc axiom

if clear(x, w) and clear(y, wn)
then if color(z, u, w)

then color (Z, u, puton(z, Y, in)).

In other words, if the action of putting block x on top of block y is legal and if block z is of color u in state
w. then z will also be of color u in the resulting state puton(x, y, w). If our deduced set contains the sentence

not (color(c, red, puton(a, b, s))),

we can then apply the resolution rule to the frame axiom and this sentence to deduce (after transformation)

(not (clear(a, s))) or (not (clear(b, s))) or (not (color(c, red, s))).

We need a separate frame axiom not only for the color of blocks, but also their size, shape, surface
texture, and any other attributes we wish to discuss in our theory. Adding all the frame axioms to our
de(uce(l set aggravates the search problem, because the axioms have many consequences irrelevant to the
problem at hand.

13y use of the conditional expression rules, we can drop all the frame axioms from our deduced set.
For example, to paraphrase the above axiom we can declare that the relation color(z, u, w) is positive with
respect to the relation corresponding to the expression ewJ :puton(x, y, w) subject to the condition

~ f clear(xr, u;) and clear(y, wn)

then 2.

If our deduced set again contains the sentence

not' ' -

we can then apply the conditional expression-replacement rule to deduce

as before, without requiring the frame axiomi. Of course, the information that certain actions and relations
are independent must still be expressed, but this can be done by polarity (IC larations rather than by axioms.
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9. DISCUSSION

The theorem-proving system we have presented lias been motivated by our work in program synthesis,
and the best examples we have of its use are in th.. domain. We have used the system to write detailed
derivations for programs over the integers and real numbers, the lists, the sets, and other structures. These
derivations are concise and easy to follow: they reflect intuitive derivations of the same programs. A paper
by Traugott [851 describes the application of this system to the derivation of several sorting programs. A
paper by Manna and Waldinger [85] describes the derivation of several binary-search programs. Our earlier
informal derivation of the unification algorithm (Manna and Waldinger [811) can be expressed formally in
this system.

An interactive implementation of the basic nonclausal theorem-proving system was completed by Malachi
and has been extended by Bronstein to include some of the relation rules. An entirely automatic imple-

A mentation is being contemplated. The relation rules will also be valuable for proving purely mathematical
theorems. For this purpose they may be incorporated into clausal as well as nonclausal theorem-proving
systems.

Theorem provers have exhibited superhuman abilities in limited subject domains, but seem least com-
petent in areas in which human intuition is best developed. One reason for this is that an axiomatic
formalization obscures the simplicity of the subject area; facts that a person would consider too obvious to
require saying in an intuitive argument must be stated explicitly and dealt with in the corresponding formal

4 proof. A person who is easily able to conduct the argument informally may well be unable to understand
the formal proof, let alone to produce it.

Our work in special relations is part of a continuing effort to make formal theorem proving resemble
intuitive reasoning. In the kind of system we envision, proofs are shorter, the search space is compressed,
and heuristics based on human intuition become applicable.
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